Papers
Topics
Authors
Recent
2000 character limit reached

Predicting Outcomes in Video Games with Long Short Term Memory Networks (2402.15923v1)

Published 24 Feb 2024 in cs.LG, cs.AI, and cs.MM

Abstract: Forecasting winners in E-sports with real-time analytics has the potential to further engage audiences watching major tournament events. However, making such real-time predictions is challenging due to unpredictable variables within the game involving diverse player strategies and decision-making. Our work attempts to enhance audience engagement within video game tournaments by introducing a real-time method of predicting wins. Our Long Short Term Memory Network (LSTMs) based approach enables efficient predictions of win-lose outcomes by only using the health indicator of each player as a time series. As a proof of concept, we evaluate our model's performance within a classic, two-player arcade game, Super Street Fighter II Turbo. We also benchmark our method against state of the art methods for time series forecasting; i.e. Transformer models found in LLMs. Finally, we open-source our data set and code in hopes of furthering work in predictive analysis for arcade games.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.