Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Predicting Outcomes in Video Games with Long Short Term Memory Networks (2402.15923v1)

Published 24 Feb 2024 in cs.LG, cs.AI, and cs.MM

Abstract: Forecasting winners in E-sports with real-time analytics has the potential to further engage audiences watching major tournament events. However, making such real-time predictions is challenging due to unpredictable variables within the game involving diverse player strategies and decision-making. Our work attempts to enhance audience engagement within video game tournaments by introducing a real-time method of predicting wins. Our Long Short Term Memory Network (LSTMs) based approach enables efficient predictions of win-lose outcomes by only using the health indicator of each player as a time series. As a proof of concept, we evaluate our model's performance within a classic, two-player arcade game, Super Street Fighter II Turbo. We also benchmark our method against state of the art methods for time series forecasting; i.e. Transformer models found in LLMs. Finally, we open-source our data set and code in hopes of furthering work in predictive analysis for arcade games.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.