Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Discretionary Lane-Change Decision and Control via Parameterized Soft Actor-Critic for Hybrid Action Space (2402.15790v2)

Published 24 Feb 2024 in cs.RO, cs.SY, and eess.SY

Abstract: This study focuses on a crucial task in the field of autonomous driving, autonomous lane change. Autonomous lane change plays a pivotal role in improving traffic flow, alleviating driver burden, and reducing the risk of traffic accidents. However, due to the complexity and uncertainty of lane-change scenarios, the functionality of autonomous lane change still faces challenges. In this research, we conducted autonomous lane-change simulations using both deep reinforcement learning (DRL) and model predictive control (MPC). Specifically, we used the parameterized soft actor--critic (PASAC) algorithm to train a DRL-based lane-change strategy to output both discrete lane-change decisions and continuous longitudinal vehicle acceleration. We also used MPC for lane selection based on the smallest predictive car-following costs for the different lanes. For the first time, we compared the performance of DRL and MPC in the context of lane-change decisions. The simulation results indicated that, under the same reward/cost function and traffic flow, both MPC and PASAC achieved a collision rate of 0%. PASAC demonstrated a comparable performance to MPC in terms of average rewards/costs and vehicle speeds.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: