Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dental Severity Assessment through Few-shot Learning and SBERT Fine-tuning (2402.15755v2)

Published 24 Feb 2024 in cs.CL

Abstract: Dental diseases have a significant impact on a considerable portion of the population, leading to various health issues that can detrimentally affect individuals' overall well-being. The integration of automated systems in oral healthcare has become increasingly crucial. Machine learning approaches offer a viable solution to address challenges such as diagnostic difficulties, inefficiencies, and errors in oral disease diagnosis. These methods prove particularly useful when physicians struggle to predict or diagnose diseases at their early stages. In this study, thirteen different machine learning, deep learning, and LLMs were employed to determine the severity level of oral health issues based on radiologists' reports. The results revealed that the Few-shot learning with SBERT and Multi-Layer Perceptron model outperformed all other models across various experiments, achieving an impressive accuracy of 94.1% as the best result. Consequently, this model exhibits promise as a reliable tool for evaluating the severity of oral diseases, enabling patients to receive more effective treatment and aiding healthcare professionals in making informed decisions regarding resource allocation and the management of high-risk patients.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)