Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

GAOKAO-MM: A Chinese Human-Level Benchmark for Multimodal Models Evaluation (2402.15745v2)

Published 24 Feb 2024 in cs.CL, cs.AI, and cs.CV

Abstract: The Large Vision-LLMs (LVLMs) have demonstrated great abilities in image perception and language understanding. However, existing multimodal benchmarks focus on primary perception abilities and commonsense knowledge which are insufficient to reflect the comprehensive capabilities of LVLMs. We propose GAOKAO-MM, a multimodal benchmark based on the Chinese College Entrance Examination (GAOKAO), comprising of 8 subjects and 12 types of images, such as diagrams, function graphs, maps and photos. GAOKAO-MM derives from native Chinese context and sets human-level requirements for the model's abilities, including perception, understanding, knowledge and reasoning. We evaluate 10 LVLMs and find that the accuracies of all of them are lower than 50%, with GPT-4-Vison (48.1%), Qwen-VL-Plus (41.2%) and Gemini-Pro-Vision (35.1%) ranking in the top three positions. The results of our multi-dimension analysis indicate that LVLMs have moderate distance towards AGI and provide insights facilitating the development of multilingual LVLMs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets