Hybrid Physics-Based and Data-Driven Modeling of Vascular Bifurcation Pressure Differences (2402.15651v1)
Abstract: Reduced-order models (ROMs) allow for the simulation of blood flow in patient-specific vasculatures without the high computational cost and wait time associated with traditional computational fluid dynamics (CFD) models. Unfortunately, due to the simplifications made in their formulations, ROMs can suffer from significantly reduced accuracy. One common simplifying assumption is the continuity of static or total pressure over vascular junctions. In many cases, this assumption has been shown to introduce significant error. We propose a model to account for this pressure difference, with the ultimate goal of increasing the accuracy of cardiovascular ROMs. Our model successfully uses a structure common in existing ROMs in conjunction with machine-learning techniques to predict the pressure difference over a vascular bifurcation. We analyze the performance of our model on steady and transient flows, testing it on three bifurcation cohorts representing three different bifurcation geometric types. We also compare the efficacy of different machine-learning techniques and two different model modalities.
- Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. Biophysics Reviews, 4(1), 3 2023. ISSN 26884089. doi: 10.1063/5.0109400.
- Blood Flow. In Encyclopedia of Computational Mechanics Second Edition, pages 1–31. Wiley, 12 2017. doi: 10.1002/9781119176817.ecm2068. URL https://onlinelibrary.wiley.com/doi/10.1002/9781119176817.ecm2068.
- Blood flow analysis with computational fluid dynamics and 4D-flow MRI for vascular diseases, 11 2022. ISSN 18764738.
- Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102:18–28, 201. doi: 10.1136/heartjnl. URL http://heart.bmj.com/.
- Byoung Kwon Lee. Computational fluid dynamics in cardiovascular disease, 2011. ISSN 17385555.
- Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease. Biomechanics and Modeling in Mechanobiology, 11(6):915–932, 7 2012. ISSN 16177959. doi: 10.1007/s10237-011-0361-8.
- Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomechanics and Modeling in Mechanobiology, 13(6):1261–1276, 10 2014. ISSN 16177940. doi: 10.1007/s10237-014-0570-z.
- The risk of myocardial ischemia in patients with Kawasaki Disease: Insights from patient-specific simulations of coronary hemodynamics. MedRxiv, 2022. doi: 10.1101/2022.09.08.22279654. URL https://doi.org/10.1101/2022.09.08.22279654.
- Hemodynamic variables in aneurysms are associated with thrombotic risk in children with Kawasaki disease. International Journal of Cardiology, 281:15–21, 4 2019. ISSN 18741754. doi: 10.1016/j.ijcard.2019.01.092.
- Computational Fluid Dynamics Simulations in Realistic 3-D Geometries of the Total Cavopulmonary Anastomosis: The Influence of the Inferior Caval Anastomosis. Journal of Biomechanical Engineering, 125(6):805–813, 12 2003. ISSN 01480731. doi: 10.1115/1.1632523.
- Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. Journal of Thoracic and Cardiovascular Surgery, 126(4):1040–1047, 2003. ISSN 00225223. doi: 10.1016/S0022-5223(03)00698-6.
- Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: Two patient-specific cases. Journal of Biomechanics, 46(2):423–429, 1 2013. ISSN 00219290. doi: 10.1016/j.jbiomech.2012.10.023.
- Computational simulation-derived hemodynamic and biomechanical properties of the pulmonary arterial tree early in the course of ventricular septal defects. Biomechanics and Modeling in Mechanobiology, 20(6):2471–2489, 12 2021. ISSN 16177940. doi: 10.1007/s10237-021-01519-4.
- Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. American Heart Journal, 155(1):166–174, 1 2008. ISSN 00028703. doi: 10.1016/j.ahj.2007.08.014.
- Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients. Biomechanics and Modeling in Mechanobiology, 18(3):779–796, 6 2019. ISSN 16177940. doi: 10.1007/s10237-018-01114-0.
- Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulmonary Circulation, 2(4):470–476, 10 2012. ISSN 20458940. doi: 10.4103/2045-8932.105035.
- Systematic review on the application of computational fluid dynamics as a tool for the design of coronary artery stents, 12 2023. ISSN 23148543.
- Optimization of cardiovascular stent design using computational fluid dynamics. Journal of Biomechanical Engineering, 134(1), 2012. ISSN 01480731. doi: 10.1115/1.4005542.
- Computational fluid dynamics and stent design. Artificial Organs, 26(7):614–621, 2002. ISSN 0160564X. doi: 10.1046/j.1525-1594.2002.07084.x.
- Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Annals of Biomedical Engineering, 40(10):2228–2242, 10 2012. ISSN 00906964. doi: 10.1007/s10439-012-0579-3.
- Computational Evaluation of Venous Graft Geometries in Coronary Artery Bypass Surgery. Seminars in Thoracic and Cardiovascular Surgery, 34(2):521–532, 6 2022. ISSN 15329488. doi: 10.1053/j.semtcvs.2021.03.007.
- Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts. Journal of Cardiovascular Translational Research, 9(4):279–290, 8 2016. ISSN 19375395. doi: 10.1007/s12265-016-9706-0.
- Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. Computer Methods in Applied Mechanics and Engineering, 199(33-36):2135–2149, 7 2010. ISSN 00457825. doi: 10.1016/j.cma.2010.03.012.
- Passive performance evaluation and validation of a viscous impeller pump for subpulmonary fontan circulatory support. Scientific Reports, 13(1):12668, 2023.
- The use of computational fluid dynamics in the development of ventricular assist devices, 4 2011. ISSN 13504533.
- Danny Bluestein. Utilizing Computational Fluid Dynamics in Cardiovascular Engineering and Medicine—What You Need to Know. Its Translation to the Clinic/Bedside, 2 2017. ISSN 15251594.
- Competing flow between partial circulatory support and native cardiac output: A clinical computational fluid dynamics study. ASAIO Journal, 64(5):636–642, 2018. ISSN 1538943X. doi: 10.1097/MAT.0000000000000701.
- Mathematical modeling of coupled drug and drug-encapsulated nanoparticle transport in patient-specific coronary artery walls. Computational Mechanics, 49(2):213–242, 2012. ISSN 01787675. doi: 10.1007/s00466-011-0633-2.
- USNCTAM perspectives on mechanics in medicine, 8 2014. ISSN 17425662.
- Flow topology and targeted drug delivery in cardiovascular disease. Journal of Biomechanics, 119, 4 2021. ISSN 18732380. doi: 10.1016/j.jbiomech.2021.110307.
- On the Periodicity of Cardiovascular Fluid Dynamics Simulations. Annals of Biomedical Engineering, 49(12):3574–3592, 12 2021. ISSN 15739686. doi: 10.1007/s10439-021-02796-x.
- Non-invasive estimation of pressure drop across aortic coarctations: validation of 0D and 3D computational models with in vivo measurements. medRxiv, 2023a. doi: 10.1101/2023.09.05.23295066. URL https://doi.org/10.1101/2023.09.05.23295066.
- Patient-specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical Engineering, 38(10):3195–3209, 10 2010. ISSN 00906964. doi: 10.1007/s10439-010-0083-6.
- A 1D–3D Hybrid Model of Patient-Specific Coronary Hemodynamics. Cardiovascular Engineering and Technology, 13(2):331–342, 4 2022. ISSN 18694098. doi: 10.1007/s13239-021-00580-5.
- A Modular Framework for Implicit 3D-0D Coupling in Cardiac Mechanics. arXiv, 10 2023. URL http://arxiv.org/abs/2310.13780.
- Mette S Olufsen. Structured tree outflow condition for blood flow in larger systemic arteries. American Physiological Society Journal, 276(1):257–68, 1999.
- The effects of clinically-derived parametric data uncertainty in patient-specific coronary simulations with deformable walls. International Journal for Numerical Methods in Biomedical Engineering, 36(8), 8 2020a. ISSN 20407947. doi: 10.1002/cnm.3351.
- Multi-Fidelity Estimators for Coronary Circulation Models Under Clinically-Informed Data Uncertainty. International Journal for Uncertainty Quantification, 10(5):449–466, 2020b.
- Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Computers and Fluids, 142:128–138, 1 2017. ISSN 00457930. doi: 10.1016/j.compfluid.2016.05.015.
- A global multiscale mathematical model for the human circulation with emphasis on the venous system. International Journal for Numerical Methods in Biomedical Engineering, 30(7):681–725, 2014. ISSN 20407947. doi: 10.1002/cnm.2622.
- Development of a Numerical Method for Patient-Specific Cerebral Circulation Using 1D–0D Simulation of the Entire Cardiovascular System with SPECT Data. Annals of Biomedical Engineering, 44(8):2351–2363, 8 2016. ISSN 15739686. doi: 10.1007/s10439-015-1544-8.
- svMorph: Interactive Geometry-Editing Tools for Virtual Patient-Specific Vascular Anatomies. Journal of Biomechanical Engineering, 145(3), 1 2023. ISSN 15288951. doi: 10.1115/1.4056055.
- On the One-Dimensional Theory of Blood Flow in the Larger Vessels. Mathematical Biosciences, 18(1-2):161–170, 1973.
- Computer Simulation of Arterial Flow with applications to Arterial and Aortic Stenosis A A0 A. J. Biomechanics, 25(12):1477–1488, 1992.
- Coronary pressure-flow relations and the vascular waterfall. Cardiovascular Research, 17(3):162–169, 3 1983. ISSN 0008-6363. doi: 10.1093/cvr/17.3.162.
- Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System, 4 2011. ISSN 1475925X.
- Reduced models of the cardiovascular system. In Cardiovascular Mathematics, pages 347–394. Springer Milan, Milano, 2009. doi: 10.1007/978-88-470-1152-6{_}10. URL http://link.springer.com/10.1007/978-88-470-1152-6_10.
- A time-dependent non-Newtonian extension of a 1D blood flow model. Journal of Non-Newtonian Fluid Mechanics, 253:36–49, 3 2018. ISSN 03770257. doi: 10.1016/j.jnnfm.2018.01.004.
- Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Mathematical Methods in the Applied Sciences, 26(14):1161–1186, 9 2003. ISSN 01704214. doi: 10.1002/mma.407.
- M. S. Olufsen. 5. Modeling Flow and Pressure in the Systemic Arteries. In Applied Mathematical Models in Human Physiology, pages 91–136. Society for Industrial and Applied Mathematics, 1 2004. doi: 10.1137/1.9780898718287.ch5.
- A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Computer Methods in Biomechanics and Biomedical Engineering, 5(3):195–206, 2002. ISSN 10255842. doi: 10.1080/10255840290010670.
- Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model. Computer Methods in Biomechanics and Biomedical Engineering, 18(15):1704–1725, 11 2015. ISSN 14768259. doi: 10.1080/10255842.2014.948428.
- Fluid friction and wall viscosity of the 1D blood flow model. Journal of Biomechanics, 49(4):565–571, 2 2016. ISSN 18732380. doi: 10.1016/j.jbiomech.2016.01.010.
- Automated generation of 0D and 1D reduced-order models of patient-specific blood flow. International Journal for Numerical Methods in Biomedical Engineering, 38(10), 10 2022. ISSN 20407947. doi: 10.1002/cnm.3639.
- Reduced order models for transstenotic pressure drop in the coronary arteries. Journal of Biomechanical Engineering, 141(3), 3 2019. ISSN 15288951. doi: 10.1115/1.4042184.
- Cardiovascular Mathematics: : Modeling and simulation of the circulatory system. Springer Milano, 2010.
- A computational study of aortic reconstruction in single ventricle patients. Biomechanics and Modeling in Mechanobiology, 22(1):357–377, 2 2023. ISSN 16177940. doi: 10.1007/s10237-022-01650-w.
- Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol, 297:208–222, 2009. doi: 10.1152/ajpheart.00037.2009.-A. URL http://www.ajpheart.orgH208.
- Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power. Am J Physiol Heart Circ Physiol, 310:1026–1038, 2016. doi: 10.1152/ajpheart.00954.2015.-Wave. URL www.ajpheart.org.
- A branched one-dimensional model of vessel networks. Journal of Fluid Mechanics, 621:183–204, 2009. ISSN 14697645. doi: 10.1017/S0022112008004771.
- Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids, 43(6-7):673–700, 10 2003. ISSN 02712091. doi: 10.1002/fld.543.
- Multiphysics Computational Modeling in $\boldsymbol{\mathcal{C}}\mathbf{Heart}$. SIAM Journal on Scientific Computing, 38(3):C150–C178, 1 2016. ISSN 1064-8275. doi: 10.1137/15M1014097.
- Modelling pulse wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis. Journal of Biomechanics, 42(13):2116–2123, 9 2009. ISSN 00219290. doi: 10.1016/j.jbiomech.2009.05.028.
- Arterial Pulse Wave Haemodynamics. In Sandy Anderson, editor, 11th International Conference on Pressure Surges, pages 401–443. Virtual PiE Led ta BHR Group, 2012.
- Jonathan P. Mynard and P. Nithiarasu. A 1D arterial blood flow model incorporating ventricular pressure, aortic vaive ana regional coronary flow using the locally conservative Galerkin (LCG) method. Communications in Numerical Methods in Engineering, 24(5):367–417, 5 2008. ISSN 10698299. doi: 10.1002/cnm.1117.
- Hemodynamics in Patients with Aortic Coarctation: A Comparison of in vivo 4D-Flow MRI and FSI Simulation. bioRxiv, 2023b. doi: 10.1101/2023.02.13.528355. URL https://doi.org/10.1101/2023.02.13.528355.
- An improved model for reduced-order physiological fluid flows. Journal of Mechanics in Medicine and Biology, 12(3), 6 2012. ISSN 02195194. doi: 10.1142/S0219519411004666.
- Improved reduced-order modelling of cerebrovascular flow distribution by accounting for arterial bifurcation pressure drops. Journal of Biomechanics, 51:83–88, 1 2017. ISSN 18732380. doi: 10.1016/j.jbiomech.2016.12.004.
- In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Transactions on Biomedical Engineering, 50(6):649–656, 6 2003. ISSN 00189294. doi: 10.1109/TBME.2003.812201.
- A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Medical Engineering and Physics, 34(2):233–248, 3 2012. ISSN 13504533. doi: 10.1016/j.medengphy.2011.07.015.
- Modeling Pipe Networks Dominated by Junctions. Journal of Hydraulic Engineering, 119(8):949–958, 1993.
- A. Gardel. Les pertes de charge dans les ecoulements au travers de branchements en Te: Stabilite des chambres d’equilibre: Influence de la partie de l’amenagement situee al’aval de la chambre d’equilibre sur les petites oscillations avec reglage automatique: Perte de charge dans un etranglement conique. Technical report, Communications du Laboratoire d’Hydraulique de l’Ecole Polytechnique Federale de Lausanne, 1971.
- A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations. Journal of Engines, 112:565–583, 2003. URL https://about.jstor.org/terms.
- A unified method for estimating pressure losses at vascular junctions. International Journal for Numerical Methods in Biomedical Engineering, 31(7):1–23, 7 2015. ISSN 20407947. doi: 10.1002/cnm.2717.
- The Vascular Model Repository: A Public Resource of Medical Imaging Data and Blood Flow Simulation Results. Journal of Medical Devices, 7(4), 12 2013. ISSN 1932-6181. doi: 10.1115/1.4025983.
- A Distributed Lumped Parameter Model of Blood Flow. Annals of Biomedical Engineering, 48(12):2870–2886, 12 2020. ISSN 15739686. doi: 10.1007/s10439-020-02545-6.
- Accelerated Estimation of Pulmonary Artery Stenosis Pressure Gradients with Distributed Lumped Parameter Modeling vs. 3D CFD with Instantaneous Adaptive Mesh Refinement: Experimental Validation in Swine. Annals of Biomedical Engineering, 49(9):2365–2376, 9 2021. ISSN 0090-6964. doi: 10.1007/s10439-021-02780-5.
- Comparison of 1D and 3D Models for the Estimation of Fractional Flow Reserve. Scientific Reports, 8(1), 12 2018. ISSN 20452322. doi: 10.1038/s41598-018-35344-0.
- A nonlinear multi-scale model for blood circulation in a realistic vascular system. Royal Society Open Science, 8(12), 12 2021. doi: 10.1098/rsos.201949.
- An improved reduced-order model for pressure drop across arterial stenoses. PLoS ONE, 16(10 October), 10 2021. ISSN 19326203. doi: 10.1371/journal.pone.0258047.
- Non-invasive hemodynamic assessment of aortic coarctation: Validation with in vivo measurements. Annals of Biomedical Engineering, 41(4):669–681, 4 2013. ISSN 00906964. doi: 10.1007/s10439-012-0715-0.
- SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Annals of Biomedical Engineering, 45(3):525–541, 3 2017. ISSN 0090-6964. doi: 10.1007/s10439-016-1762-8.
- Oliver Kramer. K-Nearest Neighbors. In Intelligent Systems Reference Library, volume 51, pages 13–23. Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642-38652-7{_}2.
- Classification And Regression Trees. Routledge, New York, 10 2017. ISBN 9781315139470. doi: 10.1201/9781315139470.
- Support Vector Regression. In Efficient Learning Machines, pages 67–80. Apress, Berkeley, CA, 2015. doi: 10.1007/978-1-4302-5990-9{_}4.
- Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005. ISBN 9780262256834. doi: 10.7551/mitpress/3206.001.0001.
- Charu C. Aggarwal. Neural Networks and Deep Learning. Springer International Publishing, Cham, 2023. ISBN 978-3-031-29641-3. doi: 10.1007/978-3-031-29642-0.
- Trent Hauck. Scikit-Learn Cookbook. Packt Publishing, 2014.
- Tune: A Research Platform for Distributed Model Selection and Training. arXiv, 7 2018.
- The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 1 2009. ISSN 1045-9227. doi: 10.1109/TNN.2008.2005605.