Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Model-Driven Dashboard Generation for Systems-of-Systems (2402.15257v1)

Published 23 Feb 2024 in cs.SE

Abstract: Configuring and evolving dashboards in complex and large-scale Systems-of-Systems (SoS) can be an expensive and cumbersome task due to the many Key Performance Indicators (KPIs) that are usually collected and have to be arranged in a number of visualizations. Unfortunately, setting up dashboards is still a largely manual and error-prone task requiring extensive human intervention. This short paper describes emerging results about the definition of a model-driven technology-agnostic approach that can automatically transform a simple list of KPIs into a dashboard model, and then translate the model into an actual dashboard for a target dashboard technology. Dashboard customization can be efficiently obtained by solely modifying the abstract model representation, freeing operators from expensive interactions with actual dashboards.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. J. Díaz, J. Pérez, J. Pérez, and J. Garbajosa, “Conceptualizing a framework for cyber-physical systems of systems development and deployment,” in European Conference on Software Architecture Workshops, 2016.
  2. O. Carlsson, C. Hegedűs, J. Delsing, and P. Varga, “Organizing iot systems-of-systems from standardized engineering data,” in Annual Conference of the IEEE Industrial Electronics Society, 2016.
  3. J. Lukkien, “A systems of systems perspective on the internet of things,” ACM SIGBED Review, vol. 13, no. 3, pp. 56–62, 2016.
  4. A. Morkevicius, L. Bisikirskiene, and G. Bleakley, “Using a systems of systems modeling approach for developing industrial internet of things applications,” in System of Systems Engineering Conference, 2017.
  5. G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of things as system of systems: A review of methodologies, frameworks, platforms, and tools,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 223–236, 2021.
  6. M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner, and H. Zeisel, “Reminds: A flexible runtime monitoring framework for systems of systems,” Journal of Systems and Software, vol. 112, pp. 123–136, 2016.
  7. L. M. Kritzinger, T. Krismayer, M. Vierhauser, R. Rabiser, and P. Grünbacher, “Visualization support for requirements monitoring in systems of systems,” in 32nd IEEE/ACM International Conference on Automated Software Engineering, 2017.
  8. R. Rabiser, J. Thanhofer-Pilisch, M. Vierhauser, P. Grünbacher, and A. Egyed, “Developing and evolving a dsl-based approach for runtime monitoring of systems of systems,” Automated Software Engineering, vol. 25, pp. 875–915, 2018.
  9. G. Labs, “Grafana,” https://grafana.com/, 2023, accessed: 2023.
  10. E. B.V., “Kibana,” https://www.elastic.co/kibana, 2023, accessed: 2023.
  11. M. Chakraborty and A. P. Kundan, “Grafana,” in Monitoring Cloud-Native Applications: Lead Agile Operations Confidently Using Open Source Software, 2021, pp. 187–240.
  12. T. Dodds, “Elasticsearch dashboard,” https://grafana.com/grafana/dashboards/878-elasticsearch-dashboard/, 2018, accessed: 2023.
  13. J. M. Alcaraz Calero and J. G. Aguado, “Monpaas: An adaptive monitoring platformas a service for cloud computing infrastructures and services,” IEEE Transactions on Services Computing, vol. 8, no. 1, pp. 65–78, 2015.
  14. D. Trihinas, G. Pallis, and M. D. Dikaiakos, “Monitoring elastically adaptive multi-cloud services,” IEEE Transactions on Cloud Computing, vol. 6, no. 3, pp. 800–814, 2018.
  15. P. Authors, “Http sd,” https://prometheus.io/docs/prometheus/latest/http_sd/, 2023, accessed: 2023.
  16. A. Tundo, M. Mobilio, O. Riganelli, and L. Mariani, “Automated probe life-cycle management for monitoring-as-a-service,” IEEE Transactions on Services Computing, vol. 16, no. 2, pp. 969–982, 2023.
  17. V. Colombo, A. Tundo, M. Ciavotta, and L. Mariani, “Towards self-adaptive peer-to-peer monitoring for fog environments,” in Symposium on Software Engineering for Adaptive and Self-Managing Systems, 2022.
  18. A. Tundo, C. Castelnovo, M. Mobilio, O. Riganelli, and L. Mariani, “Declarative dashboard generation,” in IEEE International Symposium on Software Reliability Engineering Workshops, 2020.
  19. A. Vázquez-Ingelmo, F. García-Peñalvo, R. Therón, D. Amo-Filva, and D. Fonseca, “Connecting domain-specific features to source code: towards the automatization of dashboard generation,” Cluster Computing, vol. 23, p. 1803–1816, 2020.
  20. M. Kintz, M. Kochanowski, and F. Koetter, “Creating user-specific business process monitoring dashboards with a model-driven approach,” in International Conference on Model-Driven Engineering and Software Development, 2017.
  21. L. Erazo-Garzon, K. Quinde, A. Bermeo, and P. Cedillo, “A domain-specific language and model-based engine for implementing iot dashboard web applications,” in Information and Communication Technologies, 2023.
  22. O. Belo, P. Rodrigues, R. Barros, and H. Correia, “Restructuring dynamically analytical dashboards based on usage profiles,” in International Symposium on Foundations of Intelligent Systems, 2014.
  23. I. Dabbebi, S. Iksal, J. Gilliot, M. May, and S. Garlatti, “Towards adaptive dashboards for learning analytic: An approach for conceptual design and implementation,” in International Conference on Computer Supported Education, 2017.
  24. H. Santos, V. Dantas, V. Furtado, P. Pinheiro, and D. L. McGuinness, “From data to city indicators: A knowledge graph for supporting automatic generation of dashboards,” in Extended Semantic Web Conference, 2017.
  25. S. Da Col, R. Ciucanu, M. Soare, N. Bouarour, and S. Amer-Yahia, “Dashbot: An ml-guided dashboard generation system,” in ACM International Conference on Information & Knowledge Management, 2021.
  26. C. Diamantini, D. Potena, and E. Storti, “Sempi: A semantic framework for the collaborative construction and maintenance of a shared dictionary of performance indicators,” Future Generation Computer Systems, vol. 54, pp. 352–365, 2016.
  27. P. Authors, “Prometheus node exporter,” https://github.com/prometheus/node_exporter, 2023, accessed: 2023.
  28. ——, “Prometheus,” https://prometheus.io/, 2023, accessed: 2023.
  29. D. Deng, A. Wu, H. Qu, and Y. Wu, “Dashbot: Insight-driven dashboard generation based on deep reinforcement learning,” IEEE Transactions on Visualization and Computer Graphics, vol. 29, no. 1, pp. 690–700, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com