Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Tight Inapproximability of Target Set Reconfiguration (2402.15076v1)

Published 23 Feb 2024 in cs.DS, cs.CC, and cs.DM

Abstract: Given a graph $G$ with a vertex threshold function $\tau$, consider a dynamic process in which any inactive vertex $v$ becomes activated whenever at least $\tau(v)$ of its neighbors are activated. A vertex set $S$ is called a target set if all vertices of $G$ would be activated when initially activating vertices of $S$. In the Minmax Target Set Reconfiguration problem, for a graph $G$ and its two target sets $X$ and $Y$, we wish to transform $X$ into $Y$ by repeatedly adding or removing a single vertex, using only target sets of $G$, so as to minimize the maximum size of any intermediate target set. We prove that it is NP-hard to approximate Minmax Target Set Reconfiguration within a factor of $2-o\left(\frac{1}{\operatorname{polylog} n}\right)$, where $n$ is the number of vertices. Our result establishes a tight lower bound on approximability of Minmax Target Set Reconfiguration, which admits a $2$-factor approximation algorithm. The proof is based on a gap-preserving reduction from Target Set Selection to Minmax Target Set Reconfiguration, where NP-hardness of approximation for the former problem is proven by Chen (SIAM J. Discrete Math., 2009) and Charikar, Naamad, and Wirth (APPROX/RANDOM 2016).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube