Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Inapproximability of Target Set Reconfiguration (2402.15076v1)

Published 23 Feb 2024 in cs.DS, cs.CC, and cs.DM

Abstract: Given a graph $G$ with a vertex threshold function $\tau$, consider a dynamic process in which any inactive vertex $v$ becomes activated whenever at least $\tau(v)$ of its neighbors are activated. A vertex set $S$ is called a target set if all vertices of $G$ would be activated when initially activating vertices of $S$. In the Minmax Target Set Reconfiguration problem, for a graph $G$ and its two target sets $X$ and $Y$, we wish to transform $X$ into $Y$ by repeatedly adding or removing a single vertex, using only target sets of $G$, so as to minimize the maximum size of any intermediate target set. We prove that it is NP-hard to approximate Minmax Target Set Reconfiguration within a factor of $2-o\left(\frac{1}{\operatorname{polylog} n}\right)$, where $n$ is the number of vertices. Our result establishes a tight lower bound on approximability of Minmax Target Set Reconfiguration, which admits a $2$-factor approximation algorithm. The proof is based on a gap-preserving reduction from Target Set Selection to Minmax Target Set Reconfiguration, where NP-hardness of approximation for the former problem is proven by Chen (SIAM J. Discrete Math., 2009) and Charikar, Naamad, and Wirth (APPROX/RANDOM 2016).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Naoto Ohsaka (23 papers)

Summary

We haven't generated a summary for this paper yet.