Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Theory and Application of Contextual Optimal Transport (2402.14991v3)

Published 22 Feb 2024 in cs.LG, cs.ET, math.QA, q-bio.QM, and quant-ph

Abstract: Optimal Transport (OT) has fueled ML across many domains. When paired data measurements $(\boldsymbol{\mu}, \boldsymbol{\nu})$ are coupled to covariates, a challenging conditional distribution learning setting arises. Existing approaches for learning a $\textit{global}$ transport map parameterized through a potentially unseen context utilize Neural OT and largely rely on Brenier's theorem. Here, we propose a first-of-its-kind quantum computing formulation for amortized optimization of contextualized transportation plans. We exploit a direct link between doubly stochastic matrices and unitary operators thus unravelling a natural connection between OT and quantum computation. We verify our method (QontOT) on synthetic and real data by predicting variations in cell type distributions conditioned on drug dosage. Importantly we conduct a 24-qubit hardware experiment on a task challenging for classical computers and report a performance that cannot be matched with our classical neural OT approach. In sum, this is a first step toward learning to predict contextualized transportation plans through quantum computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. The power of quantum neural networks. Nature Computational Science, 1(6):403–409, 2021.
  2. Input convex neural networks. In International Conference on Machine Learning, pp. 146–155. PMLR, 2017.
  3. Elementary gates for quantum computation. Physical Review A, 52(5):3457–3467, nov 1995. doi: 10.1103/physreva.52.3457. URL https://doi.org/10.1103%2Fphysreva.52.3457.
  4. Towards quantum-enabled cell-centric therapeutics. arXiv preprint arXiv:2307.05734, 2023.
  5. Nevergrad: black-box optimization platform. ACM SIGEVOlution, 14(1):8–15, 2021.
  6. Quantum generative adversarial networks for anomaly detection in high energy physics. arXiv preprint - arXiv:2304.14439, 2023.
  7. Problems and Snapshots from the World of Probability. Springer New York, New York, NY, 1994. ISBN 978-1-4612-4304-5. doi: 10.1007/978-1-4612-4304-5. URL https://doi.org/10.1007/978-1-4612-4304-5.
  8. Contextuality and inductive bias in quantum machine learning, 2023.
  9. Brenier, Y. Décomposition polaire et réarrangement monotone des champs de vecteurs. CR Acad. Sci. Paris Sér. I Math., 305:805–808, 1987.
  10. Brualdi, R. A. Combinatorial Matrix Classes. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2006.
  11. Supervised training of conditional monge maps. Advances in Neural Information Processing Systems, 35:6859–6872, 2022.
  12. Learning single-cell perturbation responses using neural optimal transport. Nature Methods, pp.  1–10, 2023.
  13. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nature communications, 11(1):2084, 2020.
  14. A unified computational framework for single-cell data integration with optimal transport. Nature Communications, 13(1):7419, 2022.
  15. Cuturi, M. Sinkhorn distances: Lightspeed computation of optimal transportation distances. 2013. doi: 10.48550/ARXIV.1306.0895. URL https://arxiv.org/abs/1306.0895.
  16. Optimal transport tools (ott): A jax toolbox for all things wasserstein. arXiv preprint arXiv:2201.12324, 2022.
  17. Quantum computing for high-energy physics: State of the art and challenges. summary of the qc4hep working group. arXiv preprint arXiv:2307.03236, 2023.
  18. Volume of the set of unistochastic matrices of order 3 and the mean jarlskog invariant. Journal of Mathematical Physics, 50(12), December 2009. ISSN 1089-7658. doi: 10.1063/1.3272543. URL http://dx.doi.org/10.1063/1.3272543.
  19. Computational methods for single-cell omics across modalities. Nature methods, 17(1):14–17, 2020.
  20. Matching single cells across modalities with contrastive learning and optimal transport. Briefings in bioinformatics, 24(3):bbad130, 2023.
  21. Quantum algorithm for linear systems of equations. Physical Review Letters, 103(15), 2009.
  22. Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747):209–212, 2019. doi: 10.1038/s41586-019-0980-2. URL https://doi.org/10.1038/s41586-019-0980-2.
  23. Matrix Analysis. Cambridge University Press, USA, 2nd edition, 2012. ISBN 0521548233.
  24. Power of data in quantum machine learning. Nature Communications, 12(1):2631, 2021.
  25. Quantum-assisted quantum compiling. Quantum, 3:140, 2019.
  26. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
  27. Mapping cells through time and space with moscot. bioRxiv, pp.  2023–05, 2023.
  28. A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics, 2021. ISSN 1745-2481.
  29. scgen predicts single-cell perturbation responses. Nature methods, 16(8):715–721, 2019.
  30. Best approximate quantum compiling problems. ACM Transactions on Quantum Computing, 3(2):1–29, 2022.
  31. Optimal transport mapping via input convex neural networks. In International Conference on Machine Learning, pp. 6672–6681. PMLR, 2020.
  32. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th edition, 2011. ISBN 1107002176.
  33. Computational optimal transport. Center for Research in Economics and Statistics Working Papers, (2017-86), 2017.
  34. Powell, M. J. A direct search optimization method that models the objective and constraint functions by linear interpolation. Springer, 1994.
  35. Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.
  36. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.
  37. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell, 176(4):928–943, 2019.
  38. Assessing the benefits and risks of quantum computers. arXiv preprint arXiv:2401.16317, 2024.
  39. Solomon, J. Optimal transport on discrete domains. AMS Short Course on Discrete Differential Geometry, 2018.
  40. Massively multiplex chemical transcriptomics at single-cell resolution. Science, 367(6473):45–51, 2020.
  41. Data driven conditional optimal transport. Machine Learning, 110:3135–3155, 2021.
  42. Discrete optimal transport with independent marginals is #p-hard. SIAM Journal on Optimization, 33(2):589–614, 2023. doi: 10.1137/22M1482044. URL https://doi.org/10.1137/22M1482044.
  43. Co-optimal transport. Advances in neural information processing systems, 33:17559–17570, 2020.
  44. Unbalanced co-optimal transport. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.  10006–10016, 2023.
  45. The monge gap: A regularizer to learn all transport maps. In International Conference on Machine Learning, volume 202, pp.  34709–34733. PMLR, 23–29 Jul 2023.
  46. Villani, C. Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2008. ISBN 9783540710509. URL https://books.google.ie/books?id=hV8o5R7_5tkC.
  47. Information theoretic measures for clusterings comparison: is a correction for chance necessary? In International conference on machine learning, pp. 1073–1080, 2009.
  48. Splatter: simulation of single-cell rna sequencing data. Genome biology, 18(1):174, 2017.

Summary

We haven't generated a summary for this paper yet.