Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What comes after optical-bypass network? A study on optical-computing-enabled network (2402.14970v1)

Published 22 Feb 2024 in cs.NI and eess.SP

Abstract: A new architectural paradigm, named, optical-computing-enabled network, is proposed as a potential evolution of the currently used optical-bypass framework. The main idea is to leverage the optical computing capabilities performed on transitional lightpaths at intermediate nodes and such proposal reverses the conventional wisdom in optical-bypass network, that is, separating in-transit lightpaths in avoidance of unwanted interference. In optical-computing-enabled network, the optical nodes are therefore upgraded from conventional functions of add-drop and cross-connect to include optical computing / processing capabilities. This is enabled by exploiting the superposition of in-transit lightpaths for computing purposes to achieve greater capacity efficiency. While traditional network design and planning algorithms have been well-developed for optical-bypass framework in which the routing and resource allocation is dedicated to each optical channel (lightpath), more complicated problems arise in optical-computing-enabled architecture as a consequence of intricate interaction between optical channels and hence resulting into the establishment of the so-called integrated / computed lightpaths. This necessitates for a different framework of network design and planning to maximize the impact of optical computing opportunities. In highlighting this critical point, a detailed case study exploiting the optical aggregation operation to re-design the optical core network is investigated in this paper. Numerical results obtained from extensive simulations on the COST239 network are presented to quantify the efficacy of optical-computing-enabled approach versus the conventional optical-bypass-enabled one.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. doi:10.1098/rsta.2015.0191.
  2. arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2014.0440, doi:10.1098/rsta.2014.0440. URL https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2014.0440
  3. doi:10.1109/JPROC.2022.3188337.
  4. doi:10.1109/JPROC.2022.3203215.
  5. doi:10.1109/JPROC.2022.3207920.
  6. doi:10.1109/JPROC.2022.3212229.
  7. doi:10.1364/JOCN.496992. URL https://opg.optica.org/jocn/abstract.cfm?URI=jocn-15-10-783
  8. NICT, Demonstration of world record: 319 tb/s transmission over 3,001 km with 4-core optical fiber (2021). URL https://www.nict.go.jp/en/press/2021/07/12-1.html
  9. doi:10.1364/OE.26.024190. URL http://www.opticsexpress.org/abstract.cfm?URI=oe-26-18-24190
  10. doi:10.1049/iet-opt.2017.0013.
  11. doi:10.1109/ICACT.2014.6779143.
  12. doi:10.1109/CSNDSP.2014.6923998.
  13. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.3410, doi:10.1002/dac.3410. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.3410
  14. doi:10.1109/NICS48868.2019.9023831.
  15. doi:10.1109/ATC.2019.8924515.
  16. doi:10.1109/JPROC.2011.2182589.
  17. doi:https://doi.org/10.1016/j.yofte.2023.103394. URL https://www.sciencedirect.com/science/article/pii/S1068520023001748
  18. doi:https://doi.org/10.1016/j.yofte.2020.102364.
  19. doi:https://doi.org/10.1016/j.ijleo.2019.163563.
  20. doi:10.1007/978-3-030-16250-4$_$8. URL https://doi.org/10.1007/978-3-030-16250-4$_$8
  21. doi:10.1109/JLT.2013.2290842.
  22. doi:10.1007/978-3-030-16250-4$_$12. URL https://doi.org/10.1007/978-3-030-16250-4$_$12
  23. doi:10.1038/s42254-023-00645-5. URL https://doi.org/10.1038/s42254-023-00645-5
  24. doi:10.1038/s41586-020-2764-0. URL https://doi.org/10.1038/s41586-020-2764-0
  25. doi:10.1038/s41566-023-01330-w. URL https://doi.org/10.1038/s41566-023-01330-w
  26. doi:10.1145/3603269.3604821. URL https://doi.org/10.1145/3603269.3604821
  27. doi:10.1145/3626111.3628177. URL https://doi.org/10.1145/3626111.3628177
  28. doi:10.1088/2040-8986/ab0e66. URL https://doi.org/10.1088/2040-8986/ab0e66
  29. doi:10.1109/JPHOT.2015.2418264.
  30. doi:10.1109/TNSM.2023.3283880.
  31. doi:10.1007/s11082-023-05123-x. URL https://doi.org/10.1007/s11082-023-05123-x
  32. doi:10.1109/MTTW56973.2022.9942542.
  33. doi:10.1109/MTTW53539.2021.9607182.
  34. doi:10.1007/s11082-022-03628-5. URL https://doi.org/10.1007/s11082-022-03628-5
  35. doi:10.1109/WRAP54064.2022.9758386.
  36. doi:10.1109/JSYST.2019.2938590.
  37. doi:https://doi.org/10.1016/j.yofte.2017.11.009.
  38. doi:https://doi.org/10.1016/j.comcom.2018.08.006.
  39. doi:10.1109/LCOMM.2017.2720661.
  40. doi:10.1109/ACCESS.2017.2761809.
  41. doi:10.1109/RTUWO.2018.8587873.
  42. doi:10.1007/s11235-018-0474-9. URL https://doi.org/10.1007/s11235-018-0474-9
  43. doi:10.1007/s11082-019-2104-5. URL https://doi.org/10.1007/s11082-019-2104-5
  44. doi:10.1007/s11082-021-03279-y. URL https://doi.org/10.1007/s11082-021-03279-y
  45. doi:10.1364/PS.2014.PW1B.3. URL http://www.osapublishing.org/abstract.cfm?URI=PS-2014-PW1B.3
  46. doi:10.1109/SIGTELCOM.2017.7849820.
  47. doi:10.1109/ICIST.2017.7926753.
  48. arXiv:2402.11618.
  49. doi:https://doi.org/10.1016/j.rio.2023.100504. URL https://www.sciencedirect.com/science/article/pii/S2666950123001566
  50. arXiv:https://pubs.aip.org/aip/app/article-pdf/doi/10.1063/5.0150989/18095171/086112_1_5.0150989.pdf, doi:10.1063/5.0150989. URL https://doi.org/10.1063/5.0150989
  51. doi:10.1109/JSTQE.2019.2943375.
  52. doi:10.1109/JLT.2021.3084353.
  53. doi:10.1109/JSTQE.2020.3032554.
  54. doi:10.1109/JSTQE.2023.3253846.
  55. doi:10.1109/JLT.2021.3097163.
  56. doi:10.1109/JLT.2013.2287219.
  57. doi:10.1109/JLT.2018.2873245.
  58. doi:10.1109/JLT.2019.2959803.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Dao Thanh Hai (14 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.