Emergent Mind

Abstract

We study the \emph{in-context learning} (ICL) ability of a \emph{Linear Transformer Block} (LTB) that combines a linear attention component and a linear multi-layer perceptron (MLP) component. For ICL of linear regression with a Gaussian prior and a \emph{non-zero mean}, we show that LTB can achieve nearly Bayes optimal ICL risk. In contrast, using only linear attention must incur an irreducible additive approximation error. Furthermore, we establish a correspondence between LTB and one-step gradient descent estimators with learnable initialization ($\mathsf{GD}\text{-}\mathbf{\beta}$), in the sense that every $\mathsf{GD}\text{-}\mathbf{\beta}$ estimator can be implemented by an LTB estimator and every optimal LTB estimator that minimizes the in-class ICL risk is effectively a $\mathsf{GD}\text{-}\mathbf{\beta}$ estimator. Finally, we show that $\mathsf{GD}\text{-}\mathbf{\beta}$ estimators can be efficiently optimized with gradient flow, despite a non-convex training objective. Our results reveal that LTB achieves ICL by implementing $\mathsf{GD}\text{-}\mathbf{\beta}$, and they highlight the role of MLP layers in reducing approximation error.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.