Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Collision-Aware Cable Grasping Method in Cluttered Environment (2402.14498v2)

Published 22 Feb 2024 in cs.RO and cs.AI

Abstract: We introduce a Cable Grasping-Convolutional Neural Network designed to facilitate robust cable grasping in cluttered environments. Utilizing physics simulations, we generate an extensive dataset that mimics the intricacies of cable grasping, factoring in potential collisions between cables and robotic grippers. We employ the Approximate Convex Decomposition technique to dissect the non-convex cable model, with grasp quality autonomously labeled based on simulated grasping attempts. The CG-CNN is refined using this simulated dataset and enhanced through domain randomization techniques. Subsequently, the trained model predicts grasp quality, guiding the optimal grasp pose to the robot controller for execution. Grasping efficacy is assessed across both synthetic and real-world settings. Given our model implicit collision sensitivity, we achieved commendable success rates of 92.3% for known cables and 88.4% for unknown cables, surpassing contemporary state-of-the-art approaches. Supplementary materials can be found at https://leizhang-public.github.io/cg-cnn/ .

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. V.-D. Nguyen, “Constructing stable grasps in 3d,” in Proceedings. 1987 IEEE International Conference on Robotics and Automation, vol. 4.   IEEE, 1987, pp. 234–239.
  2. C. Ferrari and J. F. Canny, “Planning optimal grasps.” in ICRA, vol. 3, no. 4, 1992, p. 6.
  3. H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and J. Zhang, “Pointnetgpd: Detecting grasp configurations from point sets,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 3629–3635.
  4. J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and K. Goldberg, “Learning ambidextrous robot grasping policies,” Science Robotics, vol. 4, no. 26, p. eaau4984, 2019.
  5. H.-S. Fang, C. Wang, M. Gou, and C. Lu, “Graspnet-1billion: A large-scale benchmark for general object grasping,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11 444–11 453.
  6. D. Morrison, P. Corke, and J. Leitner, “Egad! an evolved grasping analysis dataset for diversity and reproducibility in robotic manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4368–4375, 2020.
  7. J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics,” 2017.
  8. C. Zhao, Z. Tong, J. Rojas, and J. Seo, “Learning to pick by digging: Data-driven dig-grasping for bin picking from clutter,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 749–754.
  9. J. Cai, H. Cheng, Z. Zhang, and J. Su, “Metagrasp: Data efficient grasping by affordance interpreter network,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 4960–4966.
  10. M. Kiatos, I. Sarantopoulos, L. Koutras, S. Malassiotis, and Z. Doulgeri, “Learning push-grasping in dense clutter,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 8783–8790, 2022.
  11. A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning synergies between pushing and grasping with self-supervised deep reinforcement learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 4238–4245.
  12. M. Gilles, Y. Chen, T. R. Winter, E. Z. Zeng, and A. Wong, “Metagraspnet: A large-scale benchmark dataset for scene-aware ambidextrous bin picking via physics-based metaverse synthesis,” in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE).   IEEE, 2022, pp. 220–227.
  13. C. Eppner, A. Mousavian, and D. Fox, “Acronym: A large-scale grasp dataset based on simulation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6222–6227.
  14. M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 438–13 444.
  15. A. Caporali, K. Galassi, G. Laudante, G. Palli, and S. Pirozzi, “Combining vision and tactile data for cable grasping,” in 2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).   IEEE, 2021, pp. 436–441.
  16. Y. She, S. Wang, S. Dong, N. Sunil, A. Rodriguez, and E. Adelson, “Cable manipulation with a tactile-reactive gripper,” The International Journal of Robotics Research, vol. 40, no. 12-14, pp. 1385–1401, 2021.
  17. D. Seita, P. Florence, J. Tompson, E. Coumans, V. Sindhwani, K. Goldberg, and A. Zeng, “Learning to rearrange deformable cables, fabrics, and bags with goal-conditioned transporter networks,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 4568–4575.
  18. D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani, A. Balakrishna, B. Thananjeyan, J. Ichnowski, N. Jamali et al., “Deep imitation learning of sequential fabric smoothing from an algorithmic supervisor,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020, pp. 9651–9658.
  19. D. Seita, N. Jamali, M. Laskey, A. K. Tanwani, R. Berenstein, P. Baskaran, S. Iba, J. Canny, and K. Goldberg, “Deep transfer learning of pick points on fabric for robot bed-making,” in The International Symposium of Robotics Research.   Springer, 2019, pp. 275–290.
  20. X. Zhang, Y. Domae, W. Wan, and K. Harada, “Learning efficient policies for picking entangled wire harnesses: An approach to industrial bin picking,” IEEE Robotics and Automation Letters, vol. 8, no. 1, pp. 73–80, 2022.
  21. B. Fu, S. K. Leong, X. Lian, and X. Ji, “6d robotic assembly based on rgb-only object pose estimation,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 4736–4742.
  22. Y. Konishi, K. Hattori, and M. Hashimoto, “Real-time 6d object pose estimation on cpu,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 3451–3458.
  23. Y. Lin, C. Tang, F.-J. Chu, R. Xu, and P. A. Vela, “Primitive shape recognition for object grasping,” arXiv preprint arXiv:2201.00956, 2022.
  24. A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu, E. Romo et al., “Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 3750–3757.
  25. S. Kumra, S. Joshi, and F. Sahin, “Gr-convnet v2: A real-time multi-grasp detection network for robotic grasping,” Sensors, vol. 22, no. 16, p. 6208, 2022.
  26. D. Morrison, J. Leitner, and P. Corke, “Closing the loop for robotic grasping: A real-time, generative grasp synthesis approach,” 06 2018.
  27. L. Zhang, K. Bai, Z. Chen, Y. Shi, and J. Zhang, “Towards precise model-free robotic grasping with sim-to-real transfer learning,” in 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO).   IEEE, 2022, pp. 1–8.
  28. E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine learning,” http://pybullet.org, 2016–2019.
  29. K. Mamou, “Volumetric hierarchical approximate convex decomposition,” in Game Engine Gems 3, E. Lengyel, Ed.   A K Peters, 2016, pp. 141–158.
  30. M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in International conference on machine learning.   PMLR, 2019, pp. 6105–6114.
  31. Z. Zhang, “Improved adam optimizer for deep neural networks,” in 2018 IEEE/ACM 26th international symposium on quality of service (IWQoS).   Ieee, 2018, pp. 1–2.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lei Zhang (1689 papers)
  2. Kaixin Bai (9 papers)
  3. Qiang Li (449 papers)
  4. Zhaopeng Chen (21 papers)
  5. Jianwei Zhang (114 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.