Aaronson-Ambainis Conjecture Is True For Random Restrictions (2402.13952v1)
Abstract: In an attempt to show that the acceptance probability of a quantum query algorithm making $q$ queries can be well-approximated almost everywhere by a classical decision tree of depth $\leq \text{poly}(q)$, Aaronson and Ambainis proposed the following conjecture: let $f: { \pm 1}n \rightarrow [0,1]$ be a degree $d$ polynomial with variance $\geq \epsilon$. Then, there exists a coordinate of $f$ with influence $\geq \text{poly} (\epsilon, 1/d)$. We show that for any polynomial $f: { \pm 1}n \rightarrow [0,1]$ of degree $d$ $(d \geq 2)$ and variance $\text{Var}[f] \geq 1/d$, if $\rho$ denotes a random restriction with survival probability $\dfrac{\log(d)}{C_1 d}$, $$ \text{Pr} \left[f_{\rho} \text{ has a coordinate with influence} \geq \dfrac{\text{Var}[f]2 }{d{C_2}} \right] \geq \dfrac{\text{Var}[f] \log(d)}{50C_1 d}$$ where $C_1, C_2>0$ are universal constants. Thus, Aaronson-Ambainis conjecture is true for a non-negligible fraction of random restrictions of the given polynomial assuming its variance is not too low.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.