Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline (2402.13823v3)

Published 21 Feb 2024 in cs.SE

Abstract: LLMs are the cornerstone in automating Requirements Engineering (RE) tasks, underpinning recent advancements in the field. Their pre-trained comprehension of natural language is pivotal for effectively tailoring them to specific RE tasks. However, selecting an appropriate LLM from a myriad of existing architectures and fine-tuning it to address the intricacies of a given task poses a significant challenge for researchers and practitioners in the RE domain. Utilizing LLMs effectively for NLP problems in RE necessitates a dual understanding: firstly, of the inner workings of LLMs, and secondly, of a systematic approach to selecting and adapting LLMs for NLP4RE tasks. This chapter aims to furnish readers with essential knowledge about LLMs in its initial segment. Subsequently, it provides a comprehensive guideline tailored for students, researchers, and practitioners on harnessing LLMs to address their specific objectives. By offering insights into the workings of LLMs and furnishing a practical guide, this chapter contributes towards improving future research and applications leveraging LLMs for solving RE challenges.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: