Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline (2402.13823v3)

Published 21 Feb 2024 in cs.SE

Abstract: LLMs are the cornerstone in automating Requirements Engineering (RE) tasks, underpinning recent advancements in the field. Their pre-trained comprehension of natural language is pivotal for effectively tailoring them to specific RE tasks. However, selecting an appropriate LLM from a myriad of existing architectures and fine-tuning it to address the intricacies of a given task poses a significant challenge for researchers and practitioners in the RE domain. Utilizing LLMs effectively for NLP problems in RE necessitates a dual understanding: firstly, of the inner workings of LLMs, and secondly, of a systematic approach to selecting and adapting LLMs for NLP4RE tasks. This chapter aims to furnish readers with essential knowledge about LLMs in its initial segment. Subsequently, it provides a comprehensive guideline tailored for students, researchers, and practitioners on harnessing LLMs to address their specific objectives. By offering insights into the workings of LLMs and furnishing a practical guide, this chapter contributes towards improving future research and applications leveraging LLMs for solving RE challenges.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com