Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Lay Person's Guide to Biomedicine: Orchestrating Large Language Models (2402.13498v1)

Published 21 Feb 2024 in cs.CL

Abstract: Automated lay summarisation (LS) aims to simplify complex technical documents into a more accessible format to non-experts. Existing approaches using pre-trained LLMs, possibly augmented with external background knowledge, tend to struggle with effective simplification and explanation. Moreover, automated methods that can effectively assess the `layness' of generated summaries are lacking. Recently, LLMs have demonstrated a remarkable capacity for text simplification, background information generation, and text evaluation. This has motivated our systematic exploration into using LLMs to generate and evaluate lay summaries of biomedical articles. We propose a novel \textit{Explain-then-Summarise} LS framework, which leverages LLMs to generate high-quality background knowledge to improve supervised LS. We also evaluate the performance of LLMs for zero-shot LS and propose two novel LLM-based LS evaluation metrics, which assess layness from multiple perspectives. Finally, we conduct a human assessment of generated lay summaries. Our experiments reveal that LLM-generated background information can support improved supervised LS. Furthermore, our novel zero-shot LS evaluation metric demonstrates a high degree of alignment with human preferences. We conclude that LLMs have an important part to play in improving both the performance and evaluation of LS methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.