In-Distribution Consistency Regularization Improves the Generalization of Quantization-Aware Training (2402.13497v2)
Abstract: Although existing Quantization-Aware Training (QAT) methods intensively depend on knowledge distillation to guarantee performance, QAT still suffers from severe performance drop. The experiments have shown that vanilla quantization is sensitive to the perturbation from both the input and weights. Therefore, we assume that the generalization ability of QAT is predominantly caused by both the intrinsic instability (training time) and the limited generalization ability (testing time). In this paper, we address both issues from a new perspective by leveraging Consistency Regularization (CR) to improve the generalization ability of QAT. Empirical results and theoretical analysis verify that CR would bring a good generalization ability to different network architectures and various QAT methods. Extensive experiments demonstrate that our approach significantly outperforms current state-of-the-art QAT methods and even the FP counterparts. On CIFAR-10, the proposed method improves by 3.79% compared to the baseline method using ResNet18, and improves by 3.84% compared to the baseline method using the lightweight model MobileNet.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.