Emergent Mind

Abstract

Many real-world applications of the Internet of Things (IoT) employ ML algorithms to analyze time series information collected by interconnected sensors. However, distribution shift, a fundamental challenge in data-driven ML, arises when a model is deployed on a data distribution different from the training data and can substantially degrade model performance. Additionally, increasingly sophisticated deep neural networks (DNNs) are required to capture intricate spatial and temporal dependencies in multi-sensor time series data, often exceeding the capabilities of today's edge devices. In this paper, we propose SMORE, a novel resource-efficient domain adaptation (DA) algorithm for multi-sensor time series classification, leveraging the efficient and parallel operations of hyperdimensional computing. SMORE dynamically customizes test-time models with explicit consideration of the domain context of each sample to mitigate the negative impacts of domain shifts. Our evaluation on a variety of multi-sensor time series classification tasks shows that SMORE achieves on average 1.98% higher accuracy than state-of-the-art (SOTA) DNN-based DA algorithms with 18.81x faster training and 4.63x faster inference.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.