Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fog enabled distributed training architecture for federated learning (2402.12906v1)

Published 20 Feb 2024 in cs.DC

Abstract: The amount of data being produced at every epoch of second is increasing every moment. Various sensors, cameras and smart gadgets produce continuous data throughout its installation. Processing and analyzing raw data at a cloud server faces several challenges such as bandwidth, congestion, latency, privacy and security. Fog computing brings computational resources closer to IoT that addresses some of these issues. These IoT devices have low computational capability, which is insufficient to train machine learning. Mining hidden patterns and inferential rules from continuously growing data is crucial for various applications. Due to growing privacy concerns, privacy preserving machine learning is another aspect that needs to be inculcated. In this paper, we have proposed a fog enabled distributed training architecture for machine learning tasks using resources constrained devices. The proposed architecture trains machine learning model on rapidly changing data using online learning. The network is inlined with privacy preserving federated learning training. Further, the learning capability of architecture is tested on a real world IIoT use case. We trained a neural network model for human position detection in IIoT setup on rapidly changing data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: