Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-class Temporal Logic Neural Networks (2402.12397v2)

Published 17 Feb 2024 in stat.ML and cs.LG

Abstract: Time-series data can represent the behaviors of autonomous systems, such as drones and self-driving cars. The task of binary and multi-class classification for time-series data has become a prominent area of research. Neural networks represent a popular approach to classifying data; However, they lack interpretability, which poses a significant challenge in extracting meaningful information from them. Signal Temporal Logic (STL) is a formalism that describes the properties of timed behaviors. We propose a method that combines all of the above: neural networks that represent STL specifications for multi-class classification of time-series data. We offer two key contributions: 1) We introduce a notion of margin for multi-class classification, and 2) we introduce STL-based attributes for enhancing the interpretability of the results. We evaluate our method on two datasets and compare it with state-of-the-art baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. C. H. Lampert, H. Nickisch, and S. Harmeling, “Learning to detect unseen object classes by between-class attribute transfer,” in 2009 IEEE conference on computer vision and pattern recognition.   IEEE, 2009, pp. 951–958.
  2. O. Russakovsky and L. Fei-Fei, “Attribute learning in large-scale datasets,” in Trends and Topics in Computer Vision: ECCV 2010 Workshops, Heraklion, Crete, Greece, September 10-11, 2010, Revised Selected Papers, Part I 11.   Springer, 2012, pp. 1–14.
  3. D. Li, X. Chen, and K. Huang, “Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios,” in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR).   IEEE, 2015, pp. 111–115.
  4. Y. Lin, L. Zheng, Z. Zheng, Y. Wu, Z. Hu, C. Yan, and Y. Yang, “Improving person re-identification by attribute and identity learning,” Pattern recognition, vol. 95, pp. 151–161, 2019.
  5. M. Aly, “Survey on multiclass classification methods,” Neural Netw, vol. 19, no. 1-9, p. 2, 2005.
  6. C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.
  7. S. D. Bay, “Combining nearest neighbor classifiers through multiple feature subsets.” in ICML, vol. 98.   Citeseer, 1998, pp. 37–45.
  8. O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018.
  9. D. Li, M. Cai, C.-I. Vasile, and R. Tron, “Learning signal temporal logic through neural network for interpretable classification,” arXiv preprint arXiv:2210.01910, 2022.
  10. N. Baharisangari, K. Hirota, R. Yan, A. Julius, and Z. Xu, “Weighted graph-based signal temporal logic inference using neural networks,” IEEE Control Systems Letters, vol. 6, pp. 2096–2101, 2021.
  11. R. Yan, A. Julius, M. Chang, A. Fokoue, T. Ma, and R. Uceda-Sosa, “Stone: Signal temporal logic neural network for time series classification,” in 2021 International Conference on Data Mining Workshops (ICDMW).   IEEE, 2021, pp. 778–787.
  12. G. Chen, Y. Lu, R. Su, and Z. Kong, “Interpretable fault diagnosis of rolling element bearings with temporal logic neural network,” arXiv preprint arXiv:2204.07579, 2022.
  13. S. Alsalehi, E. Aasi, R. Weiss, and C. Belta, “Learning spatio-temporal specifications for dynamical systems,” in Learning for Dynamics and Control Conference.   PMLR, 2022, pp. 968–980.
  14. E. Aasi, C. I. Vasile, M. Bahreinian, and C. Belta, “Classification of time-series data using boosted decision trees,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1263–1268.
  15. A. Linard, I. Torre, I. Leite, and J. Tumova, “Inference of multi-class stl specifications for multi-label human-robot encounters,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1305–1311.
  16. T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via error-correcting output codes,” Journal of artificial intelligence research, vol. 2, pp. 263–286, 1994.
  17. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems.   Springer, 2004, pp. 152–166.
  18. Q. Wu and D.-X. Zhou, “Svm soft margin classifiers: linear programming versus quadratic programming,” Neural computation, vol. 17, no. 5, pp. 1160–1187, 2005.
  19. E. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to binary: A unifying approach for margin classifiers,” J. Mach. Learn. Res., vol. 1, pp. 113–141, 2000.
  20. A. Linard, I. Torre, I. Leite, and J. Tumova, “Inference of multi-class stl specifications for multi-label human-robot encounters,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 1305–1311.
  21. F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with lstm,” Neural computation, vol. 12, no. 10, pp. 2451–2471, 2000.
  22. M. Last, O. Maimon, and E. Minkov, “Improving stability of decision trees,” International journal of pattern recognition and artificial intelligence, vol. 16, no. 02, pp. 145–159, 2002.
  23. Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 9, pp. 2251–2265, 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com