Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Parameter-Efficient Fine-Tuning for Overcoming Catastrophic Forgetting (2402.12220v3)

Published 19 Feb 2024 in eess.AS and cs.LG

Abstract: We are motivated primarily by the adaptation of text-to-speech synthesis models; however we argue that more generic parameter-efficient fine-tuning (PEFT) is an appropriate framework to do such adaptation. Nevertheless, catastrophic forgetting remains an issue with PEFT, damaging the pre-trained model's inherent capabilities. We demonstrate that existing Bayesian learning techniques can be applied to PEFT to prevent catastrophic forgetting as long as the parameter shift of the fine-tuned layers can be calculated differentiably. In a principled series of experiments on LLMing and speech synthesis tasks, we utilize established Laplace approximations, including diagonal and Kronecker-factored approaches, to regularize PEFT with the low-rank adaptation (LoRA) and compare their performance in pre-training knowledge preservation. Our results demonstrate that catastrophic forgetting can be overcome by our methods without degrading the fine-tuning performance, and using the Kronecker-factored approximation produces a better preservation of the pre-training knowledge than the diagonal ones.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.