Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Adversarial Feature Alignment: Balancing Robustness and Accuracy in Deep Learning via Adversarial Training (2402.12187v1)

Published 19 Feb 2024 in cs.CV, cs.CR, and cs.LG

Abstract: Deep learning models continue to advance in accuracy, yet they remain vulnerable to adversarial attacks, which often lead to the misclassification of adversarial examples. Adversarial training is used to mitigate this problem by increasing robustness against these attacks. However, this approach typically reduces a model's standard accuracy on clean, non-adversarial samples. The necessity for deep learning models to balance both robustness and accuracy for security is obvious, but achieving this balance remains challenging, and the underlying reasons are yet to be clarified. This paper proposes a novel adversarial training method called Adversarial Feature Alignment (AFA), to address these problems. Our research unveils an intriguing insight: misalignment within the feature space often leads to misclassification, regardless of whether the samples are benign or adversarial. AFA mitigates this risk by employing a novel optimization algorithm based on contrastive learning to alleviate potential feature misalignment. Through our evaluations, we demonstrate the superior performance of AFA. The baseline AFA delivers higher robust accuracy than previous adversarial contrastive learning methods while minimizing the drop in clean accuracy to 1.86% and 8.91% on CIFAR10 and CIFAR100, respectively, in comparison to cross-entropy. We also show that joint optimization of AFA and TRADES, accompanied by data augmentation using a recent diffusion model, achieves state-of-the-art accuracy and robustness.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube