Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Riemannian rank-adaptive method for higher-order tensor completion in the tensor-train format (2402.12182v1)

Published 19 Feb 2024 in math.OC, cs.NA, and math.NA

Abstract: In this paper a new Riemannian rank adaptive method (RRAM) is proposed for the low-rank tensor completion problem (LRTCP) formulated as a least-squares optimization problem on the algebraic variety of tensors of bounded tensor-train (TT) rank. The method iteratively optimizes over fixed-rank smooth manifolds using a Riemannian conjugate gradient algorithm from Steinlechner (2016) and gradually increases the rank by computing a descent direction in the tangent cone to the variety. Additionally, a numerical method to estimate the amount of rank increase is proposed based on a theoretical result for the stationary points of the low-rank tensor approximation problem and a definition of an estimated TT-rank. Furthermore, when the iterate comes close to a lower-rank set, the RRAM decreases the rank based on the TT-rounding algorithm from Oseledets (2011) and a definition of a numerical rank. We prove that the TT-rounding algorithm can be considered as an approximate projection onto the lower-rank set which satisfies a certain angle condition to ensure that the image is sufficiently close to that of an exact projection. Several numerical experiments are given to illustrate the use of the RRAM and its subroutines in {\Matlab}. Furthermore, in all experiments the proposed RRAM outperforms the state-of-the-art RRAM for tensor completion in the TT format from Steinlechner (2016) in terms of computation time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: