Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 209 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Surprising Efficacy of Fine-Tuned Transformers for Fact-Checking over Larger Language Models (2402.12147v3)

Published 19 Feb 2024 in cs.CL and cs.AI

Abstract: In this paper, we explore the challenges associated with establishing an end-to-end fact-checking pipeline in a real-world context, covering over 90 languages. Our real-world experimental benchmarks demonstrate that fine-tuning Transformer models specifically for fact-checking tasks, such as claim detection and veracity prediction, provide superior performance over LLMs like GPT-4, GPT-3.5-Turbo, and Mistral-7b. However, we illustrate that LLMs excel in generative tasks such as question decomposition for evidence retrieval. Through extensive evaluation, we show the efficacy of fine-tuned models for fact-checking in a multilingual setting and complex claims that include numerical quantities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 24 likes.

Upgrade to Pro to view all of the tweets about this paper: