Papers
Topics
Authors
Recent
2000 character limit reached

Surprising Efficacy of Fine-Tuned Transformers for Fact-Checking over Larger Language Models (2402.12147v3)

Published 19 Feb 2024 in cs.CL and cs.AI

Abstract: In this paper, we explore the challenges associated with establishing an end-to-end fact-checking pipeline in a real-world context, covering over 90 languages. Our real-world experimental benchmarks demonstrate that fine-tuning Transformer models specifically for fact-checking tasks, such as claim detection and veracity prediction, provide superior performance over LLMs like GPT-4, GPT-3.5-Turbo, and Mistral-7b. However, we illustrate that LLMs excel in generative tasks such as question decomposition for evidence retrieval. Through extensive evaluation, we show the efficacy of fine-tuned models for fact-checking in a multilingual setting and complex claims that include numerical quantities.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 24 likes about this paper.