Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Model Tailor: Mitigating Catastrophic Forgetting in Multi-modal Large Language Models (2402.12048v1)

Published 19 Feb 2024 in cs.CL

Abstract: Catastrophic forgetting emerges as a critical challenge when fine-tuning multi-modal LLMs (MLLMs), where improving performance on unseen tasks often leads to a significant performance drop on the original tasks. This paper presents a comprehensive analysis of catastrophic forgetting in MLLMs and introduces a post-training adjustment method called Model Tailor. Our method primarily preserves the pre-trained parameters while replacing a small number ($\leq$ 10\%) of fine-tuned parameters, maintaining $\sim$ 99\% effectiveness on original tasks versus pre-training, and achieving $\sim$ 97\% on new tasks compared to standard fine-tuning. Specifically, we derive a sparse mask to identify the "model patch", based on a fusion strategy that integrates salience and sensitivity analysis. Subsequently, a compensation mechanism is introduced to "decorate the patch", enhancing the model's performance on both target and original tasks. Additionally, our method is adaptable to multi-task scenarios. Through extensive experiments on InstructBLIP and LLaVA-1.5 in both image captioning and visual question answering tasks, our approach demonstrates significant task adaptability while preserving inherent pre-trained capabilities.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.