Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations (2402.12038v3)
Abstract: Incorporating natural language rationales in the prompt and In-Context Learning (ICL) have led to a significant improvement of LLMs performance. However, generating high-quality rationales require human-annotation or the use of auxiliary proxy models. In this work, we propose Self-AMPLIFY to automatically generate rationales from post hoc explanation methods applied to Small LLMs (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on four SLMs and five datasets requiring strong reasoning abilities. Self-AMPLIFY achieves good results against competitors, leading to strong accuracy improvement. Self-AMPLIFY is the first method to apply post hoc explanation methods to autoregressive LLMs to generate rationales to improve their own performance in a fully automated manner.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.