Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 44 tok/s
Gemini 2.5 Flash 162 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Parallel Program Analysis on Path Ranges (2402.11938v2)

Published 19 Feb 2024 in cs.SE

Abstract: Symbolic execution is a software verification technique symbolically running programs and thereby checking for bugs. Ranged symbolic execution performs symbolic execution on program parts, so called path ranges, in parallel. Due to the parallelism, verification is accelerated and hence scales to larger programs. In this paper, we discuss a generalization of ranged symbolic execution to arbitrary program analyses. More specifically, we present a verification approach that splits programs into path ranges and then runs arbitrary analyses on the ranges in parallel. Our approach in particular allows to run different analyses on different program parts. We have implemented this generalization on top of the tool CPAchecker and evaluated it on programs from the SV-COMP benchmark. Our evaluation shows that verification can benefit from the parallelisation of the verification task, but also needs a form of work stealing (between analyses) as to become efficient

Definition Search Book Streamline Icon: https://streamlinehq.com
References (109)
  1. doi:10.1007/978-3-030-61362-4\_8.
  2. doi:10.1145/3510003.351006.
  3. doi:10.1145/3180155.3180259.
  4. doi:10.1007/978-3-642-32759-9\_13.
  5. doi:10.1007/978-3-030-71500-7\_6.
  6. doi:10.1007/978-3-030-16722-6\_23.
  7. doi:10.1145/1062455.1062533.
  8. doi:10.1007/978-3-662-46675-9\_7.
  9. doi:10.1007/978-3-662-49122-5_16.
  10. doi:10.1145/2393596.2393664.
  11. doi:10.1145/1831708.1831732.
  12. doi:10.1145/2950290.2950351.
  13. doi:10.1007/978-3-642-22110-1\_16.
  14. SV-Benchmarks Community, SV-Benchmarks (2023). URL https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23
  15. doi:10.1007/978-3-031-30826-0\_11.
  16. doi:10.1007/978-3-540-73368-3\_51.
  17. doi:10.1109/ASE.2008.13.
  18. doi:10.1007/978-1-4612-3228-5.
  19. doi:10.1145/2786805.2786867.
  20. doi:10.1145/3477579.
  21. doi:10.1007/978-3-642-37057-1\_11.
  22. doi:10.1145/2491411.2491429.
  23. doi:10.1007/978-3-030-99524-9\_31.
  24. doi:10.5281/zenodo.8398988.
  25. doi:10.1007/978-3-031-47115-5\_9.
  26. doi:10.1007/10722167\_15.
  27. doi:10.1145/360248.360252.
  28. doi:10.1145/503272.503279.
  29. doi:10.1145/964001.964021.
  30. doi:10.1007/s10817-017-9432-6.
  31. doi:10.1007/s10009-017-0469-y.
  32. doi:10.1109/ASE.2011.6100119.
  33. doi:10.1145/2804322.2804325.
  34. doi:10.1007/978-3-642-02614-0\_10.
  35. doi:10.1145/3092703.3092715.
  36. doi:10.1007/978-3-030-17502-3\_22.
  37. doi:10.1007/978-3-030-81685-8\_9.
  38. doi:10.1109/ISSRE.2013.6698889.
  39. doi:10.1007/978-3-319-77935-5\_28.
  40. doi:10.1007/978-3-642-33119-0\_16.
  41. doi:10.1007/3-540-47910-4\_21.
  42. doi:10.1016/S0065-2458(08)60520-3.
  43. doi:10.1007/978-3-030-03421-4_11.
  44. doi:10.1145/3121257.3121262.
  45. doi:10.1007/978-3-319-21690-4_39.
  46. doi:10.1109/ICSTW.2015.7107442.
  47. doi:10.1109/ICSE.2015.71.
  48. doi:10.1007/s10515-020-00270-x.
  49. doi:10.1145/2597073.2597080.
  50. doi:10.1007/978-3-662-46681-0\_34.
  51. doi:10.1007/978-3-319-89963-3\_30.
  52. doi:10.1145/2245276.2231980.
  53. doi:10.1145/3468264.3468626.
  54. doi:10.1007/11804192_7.
  55. doi:10.1145/1985793.1985971.
  56. doi:10.1145/2338965.2336789.
  57. doi:10.1109/ASE.2008.29.
  58. doi:10.1007/978-3-030-31784-3\_11.
  59. doi:10.1007/978-3-030-79379-1\_6.
  60. doi:10.1007/978-3-319-67549-7\_4.
  61. doi:10.1145/2884781.2884843.
  62. doi:10.1145/3106237.3106249.
  63. doi:10.1109/ICSE-Companion.2019.00032.
  64. doi:10.1145/1138912.1138916.
  65. doi:10.1007/978-3-642-28756-5_12.
  66. doi:10.1145/2568225.2568293.
  67. doi:10.1145/1390630.1390634.
  68. doi:10.1109/SCAM.2016.26.
  69. doi:10.1145/1706299.1706307.
  70. doi:10.1145/1181775.1181790.
  71. doi:10.1145/3368089.3409765.
  72. doi:10.1109/ASE.2008.40.
  73. doi:10.1109/ICSE.2007.41.
  74. doi:10.1145/3213846.3213868.
  75. doi:10.1145/1146238.1146255.
  76. doi:10.1007/978-3-642-24690-6\_26.
  77. doi:10.1145/2338965.2336763.
  78. doi:10.1007/978-3-319-49052-6\_13.
  79. doi:10.1109/ASE.2008.9.
  80. doi:10.1109/ICSE.2019.00074.
  81. doi:10.1007/978-3-319-21690-4_42.
  82. doi:10.1145/567752.567778.
  83. doi:10.1007/978-3-540-77505-8_23.
  84. doi:10.1145/1065010.1065036.
  85. doi:10.1145/3377811.3380363.
  86. doi:10.1145/1287624.1287645.
  87. doi:10.1109/ICSE48619.2023.00116.
  88. doi:10.1007/978-3-030-63406-3\_7.
  89. doi:10.1007/s11334-019-00331-9.
  90. doi:10.1145/2382756.2382799.
  91. doi:10.1145/3332466.3374529.
  92. doi:10.1109/ASE.2017.8115686.
  93. doi:10.1007/978-3-319-89963-3\_15.
  94. doi:10.1007/978-3-030-32304-2\_13.
  95. doi:10.1145/1966445.1966463.
  96. doi:10.1145/1713254.1713257.
  97. doi:10.1109/CBD.2013.31.
  98. doi:10.1145/3338906.3338915.
  99. doi:10.1145/2830719.2830729.
  100. doi:10.1145/3238147.3238195.
  101. doi:10.1007/3-540-63166-6\_26.
  102. doi:10.1007/3-540-48234-2\_3.
  103. doi:10.1007/3-540-45139-0\_14.
  104. doi:10.1109/ASE.2003.1240299.
  105. doi:10.1016/j.entcs.2004.10.016.
  106. doi:10.1007/978-3-319-66197-1\_8.
  107. doi:10.1145/3238147.3240481.
  108. doi:10.1007/978-3-031-50524-9\_3.
  109. doi:10.1007/978-3-642-39799-8_2. URL https://doi.org/10.1007/978-3-642-39799-8˙2

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 108 likes.

Upgrade to Pro to view all of the tweets about this paper: