Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parallel Program Analysis on Path Ranges (2402.11938v2)

Published 19 Feb 2024 in cs.SE

Abstract: Symbolic execution is a software verification technique symbolically running programs and thereby checking for bugs. Ranged symbolic execution performs symbolic execution on program parts, so called path ranges, in parallel. Due to the parallelism, verification is accelerated and hence scales to larger programs. In this paper, we discuss a generalization of ranged symbolic execution to arbitrary program analyses. More specifically, we present a verification approach that splits programs into path ranges and then runs arbitrary analyses on the ranges in parallel. Our approach in particular allows to run different analyses on different program parts. We have implemented this generalization on top of the tool CPAchecker and evaluated it on programs from the SV-COMP benchmark. Our evaluation shows that verification can benefit from the parallelisation of the verification task, but also needs a form of work stealing (between analyses) as to become efficient

Definition Search Book Streamline Icon: https://streamlinehq.com
References (109)
  1. doi:10.1007/978-3-030-61362-4\_8.
  2. doi:10.1145/3510003.351006.
  3. doi:10.1145/3180155.3180259.
  4. doi:10.1007/978-3-642-32759-9\_13.
  5. doi:10.1007/978-3-030-71500-7\_6.
  6. doi:10.1007/978-3-030-16722-6\_23.
  7. doi:10.1145/1062455.1062533.
  8. doi:10.1007/978-3-662-46675-9\_7.
  9. doi:10.1007/978-3-662-49122-5_16.
  10. doi:10.1145/2393596.2393664.
  11. doi:10.1145/1831708.1831732.
  12. doi:10.1145/2950290.2950351.
  13. doi:10.1007/978-3-642-22110-1\_16.
  14. SV-Benchmarks Community, SV-Benchmarks (2023). URL https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp23
  15. doi:10.1007/978-3-031-30826-0\_11.
  16. doi:10.1007/978-3-540-73368-3\_51.
  17. doi:10.1109/ASE.2008.13.
  18. doi:10.1007/978-1-4612-3228-5.
  19. doi:10.1145/2786805.2786867.
  20. doi:10.1145/3477579.
  21. doi:10.1007/978-3-642-37057-1\_11.
  22. doi:10.1145/2491411.2491429.
  23. doi:10.1007/978-3-030-99524-9\_31.
  24. doi:10.5281/zenodo.8398988.
  25. doi:10.1007/978-3-031-47115-5\_9.
  26. doi:10.1007/10722167\_15.
  27. doi:10.1145/360248.360252.
  28. doi:10.1145/503272.503279.
  29. doi:10.1145/964001.964021.
  30. doi:10.1007/s10817-017-9432-6.
  31. doi:10.1007/s10009-017-0469-y.
  32. doi:10.1109/ASE.2011.6100119.
  33. doi:10.1145/2804322.2804325.
  34. doi:10.1007/978-3-642-02614-0\_10.
  35. doi:10.1145/3092703.3092715.
  36. doi:10.1007/978-3-030-17502-3\_22.
  37. doi:10.1007/978-3-030-81685-8\_9.
  38. doi:10.1109/ISSRE.2013.6698889.
  39. doi:10.1007/978-3-319-77935-5\_28.
  40. doi:10.1007/978-3-642-33119-0\_16.
  41. doi:10.1007/3-540-47910-4\_21.
  42. doi:10.1016/S0065-2458(08)60520-3.
  43. doi:10.1007/978-3-030-03421-4_11.
  44. doi:10.1145/3121257.3121262.
  45. doi:10.1007/978-3-319-21690-4_39.
  46. doi:10.1109/ICSTW.2015.7107442.
  47. doi:10.1109/ICSE.2015.71.
  48. doi:10.1007/s10515-020-00270-x.
  49. doi:10.1145/2597073.2597080.
  50. doi:10.1007/978-3-662-46681-0\_34.
  51. doi:10.1007/978-3-319-89963-3\_30.
  52. doi:10.1145/2245276.2231980.
  53. doi:10.1145/3468264.3468626.
  54. doi:10.1007/11804192_7.
  55. doi:10.1145/1985793.1985971.
  56. doi:10.1145/2338965.2336789.
  57. doi:10.1109/ASE.2008.29.
  58. doi:10.1007/978-3-030-31784-3\_11.
  59. doi:10.1007/978-3-030-79379-1\_6.
  60. doi:10.1007/978-3-319-67549-7\_4.
  61. doi:10.1145/2884781.2884843.
  62. doi:10.1145/3106237.3106249.
  63. doi:10.1109/ICSE-Companion.2019.00032.
  64. doi:10.1145/1138912.1138916.
  65. doi:10.1007/978-3-642-28756-5_12.
  66. doi:10.1145/2568225.2568293.
  67. doi:10.1145/1390630.1390634.
  68. doi:10.1109/SCAM.2016.26.
  69. doi:10.1145/1706299.1706307.
  70. doi:10.1145/1181775.1181790.
  71. doi:10.1145/3368089.3409765.
  72. doi:10.1109/ASE.2008.40.
  73. doi:10.1109/ICSE.2007.41.
  74. doi:10.1145/3213846.3213868.
  75. doi:10.1145/1146238.1146255.
  76. doi:10.1007/978-3-642-24690-6\_26.
  77. doi:10.1145/2338965.2336763.
  78. doi:10.1007/978-3-319-49052-6\_13.
  79. doi:10.1109/ASE.2008.9.
  80. doi:10.1109/ICSE.2019.00074.
  81. doi:10.1007/978-3-319-21690-4_42.
  82. doi:10.1145/567752.567778.
  83. doi:10.1007/978-3-540-77505-8_23.
  84. doi:10.1145/1065010.1065036.
  85. doi:10.1145/3377811.3380363.
  86. doi:10.1145/1287624.1287645.
  87. doi:10.1109/ICSE48619.2023.00116.
  88. doi:10.1007/978-3-030-63406-3\_7.
  89. doi:10.1007/s11334-019-00331-9.
  90. doi:10.1145/2382756.2382799.
  91. doi:10.1145/3332466.3374529.
  92. doi:10.1109/ASE.2017.8115686.
  93. doi:10.1007/978-3-319-89963-3\_15.
  94. doi:10.1007/978-3-030-32304-2\_13.
  95. doi:10.1145/1966445.1966463.
  96. doi:10.1145/1713254.1713257.
  97. doi:10.1109/CBD.2013.31.
  98. doi:10.1145/3338906.3338915.
  99. doi:10.1145/2830719.2830729.
  100. doi:10.1145/3238147.3238195.
  101. doi:10.1007/3-540-63166-6\_26.
  102. doi:10.1007/3-540-48234-2\_3.
  103. doi:10.1007/3-540-45139-0\_14.
  104. doi:10.1109/ASE.2003.1240299.
  105. doi:10.1016/j.entcs.2004.10.016.
  106. doi:10.1007/978-3-319-66197-1\_8.
  107. doi:10.1145/3238147.3240481.
  108. doi:10.1007/978-3-031-50524-9\_3.
  109. doi:10.1007/978-3-642-39799-8_2. URL https://doi.org/10.1007/978-3-642-39799-8˙2

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube