Papers
Topics
Authors
Recent
2000 character limit reached

Generative Semi-supervised Graph Anomaly Detection (2402.11887v7)

Published 19 Feb 2024 in cs.LG

Abstract: This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal, contrasting to the extensively explored unsupervised setting with a fully unlabeled graph. We reveal that having access to the normal nodes, even just a small percentage of normal nodes, helps enhance the detection performance of existing unsupervised GAD methods when they are adapted to the semi-supervised setting. However, their utilization of these normal nodes is limited. In this paper, we propose a novel Generative GAD approach (namely GGAD) for the semi-supervised scenario to better exploit the normal nodes. The key idea is to generate pseudo anomaly nodes, referred to as 'outlier nodes', for providing effective negative node samples in training a discriminative one-class classifier. The main challenge here lies in the lack of ground truth information about real anomaly nodes. To address this challenge, GGAD is designed to leverage two important priors about the anomaly nodes -- asymmetric local affinity and egocentric closeness -- to generate reliable outlier nodes that assimilate anomaly nodes in both graph structure and feature representations. Comprehensive experiments on six real-world GAD datasets are performed to establish a benchmark for semi-supervised GAD and show that GGAD substantially outperforms state-of-the-art unsupervised and semi-supervised GAD methods with varying numbers of training normal nodes. Code will be made available at https://github.com/mala-lab/GGAD.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 16 likes about this paper.