Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction (2402.11838v5)

Published 19 Feb 2024 in cs.LG

Abstract: Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergence response. Despite remarkable breakthroughs in pretrained natural LLMs that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by LLMs, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios Extensive experiments on more than 20 spatio-temporal scenarios demonstrate UniST's efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction. The datasets and code implementation are released on https://github.com/tsinghua-fib-lab/UniST.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.