Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Maximum Likelihood Quantum Error Mitigation for Algorithms with a Single Correct Output (2402.11830v1)

Published 19 Feb 2024 in quant-ph, cs.IT, and math.IT

Abstract: Quantum error mitigation is an important technique to reduce the impact of noise in quantum computers. With more and more qubits being supported on quantum computers, there are two emerging fundamental challenges. First, the number of shots required for quantum algorithms with large numbers of qubits needs to increase in order to obtain a meaningful distribution or expected value of an observable. Second, although steady progress has been made in improving the fidelity of each qubit, circuits with a large number of qubits are likely to produce erroneous results. This low-shot, high-noise regime calls for highly scalable error mitigation techniques. In this paper, we propose a simple and effective mitigation scheme, qubit-wise majority vote, for quantum algorithms with a single correct output. We show that our scheme produces the maximum likelihood (ML) estimate under certain assumptions, and bound the number of shots required. Our experimental results on real quantum devices confirm that our proposed approach requires fewer shots than existing ones, and can sometimes recover the correct answers even when they are not observed from the measurement results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.