Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast Cancer Through Multimodal Data Fusion (2402.11788v1)

Published 19 Feb 2024 in cs.CV and cs.AI

Abstract: Survival risk stratification is an important step in clinical decision making for breast cancer management. We propose a novel deep learning approach for this purpose by integrating histopathological imaging, genetic and clinical data. It employs vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level. A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy. Experiments on the public TCGA-BRCA dataset show that our model, trained using the negative log likelihood loss function, can achieve superior performance with a mean C-index of 0.64, surpassing existing methods. This advancement facilitates tailored treatment strategies, potentially leading to improved patient outcomes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. H. Lindman, F. Wiklund, and K. K. Andersen, “Long-term treatment patterns and survival in metastatic breast cancer by intrinsic subtypes—an observational cohort study in Sweden,” BMC Cancer, vol. 22, p. 1006, 2022.
  2. Y. Han, J. Wang, and B. Xu, “Clinicopathological characteristics and prognosis of breast cancer with special histological types: A surveillance, epidemiology, and end results database analysis,” The Breast, vol. 54, pp. 114–120, 2020.
  3. C. Shuai, F. Yuan, Y. Liu, C. Wang, J. Wang, and H. He, “Estrogen receptor—positive breast cancer survival prediction and analysis of resistance–related genes introduction,” PeerJ, vol. 9, p. e12202, 2021.
  4. X. Li, L. Liu, G. J. Goodall, A. W. Schreiber, T. Xu, J. Li, and T. D. Le, “A novel single-cell based method for breast cancer prognosis,” PLoS Computational Biology, vol. 16, p. e1008133, 2020.
  5. V. Subramanian, T. Syeda-Mahmood, and M. N. Do, “Multi-modality fusion using canonical correlation analysis methods: Application in breast cancer survival prediction from histology and genomics,” 11 2021.
  6. C. Nero, F. Ciccarone, A. Pietragalla, S. Duranti, G. Daniele, G. Scambia, and D. Lorusso, “Adjuvant treatment recommendations in early-stage endometrial cancer: What changes with the introduction of the integrated molecular-based risk assessment,” Frontiers in Oncology, vol. 11, p. 612450, 2021.
  7. W. Guo, W. Liang, Q. Deng, and X. Zou, “A multimodal affinity fusion network for predicting the survival of breast cancer patients,” Frontiers in Genetics, vol. 12, p. 709027, 2021.
  8. Y. B. Shvetsov, L. R. Wilkens, K. K. White, M. Chong, A. Buyum, G. Badowski, R. T. L. Guerrero, and R. Novotny, “Prediction of breast cancer risk among women of the Mariana Islands: The BRISK retrospective case—control study,” BMJ Open, vol. 12, p. e061205, 2022.
  9. K. Holli-Helenius, A. Salminen, I. Rinta-Kiikka, I. Koskivuo, N. Brück, P. Boström, and R. Parkkola, “MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes—a feasibility study,” BMC Medical Imaging, vol. 17, p. 69, 2017.
  10. K. Yao, E. Schaafsma, B. Zhang, and C. Cheng, “Tumor cell intrinsic and extrinsic features predict prognosis in estrogen receptor positive breast cancer,” PLOS Computational Biology, vol. 18, pp. 1–22, 03 2022.
  11. S. C. Wetstein, V. M. d. Jong, N. Stathonikos, M. Opdam, G. M. H. E. Dackus, J. P. W. Pluim, P. J. v. Diest, and M. Veta, “Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images,” Scientific Reports, vol. 12, 2022.
  12. T. Wei, X. Yuan, R. Gao, L. J. Johnston, J. Zhou, Y. Wang, W. Kong, Y. Xie, Y. Zhang, D. Xu, and Z. Yu, “Survival prediction of stomach cancer using expression data and deep learning models with histopathological images,” Cancer Science, vol. 114, pp. 690–701, 2022.
  13. L. Chen, H. Zeng, X. Yu, Y. Huang, Y. Luo, and X. Ma, “Histopathological images and multi-omics integration predict molecular characteristics and survival in lung adenocarcinoma,” Frontiers in Cell and Developmental Biology, vol. 9, 2021.
  14. X. Wu, Y. Shi, M. Wang, and A. Li, “CAMR: cross-aligned multimodal representation learning for cancer survival prediction,” Bioinformatics, vol. 39, p. btad025, 2023.
  15. Y. He, B. Hu, C. Zhu, W. Xu, X. Hao, B. Dong, X. Chen, Q. Dong, and X. Zhou, “A novel multimodal radiomics model for predicting prognosis of resected hepatocellular carcinoma,” Frontiers in Oncology, vol. 12, p. 745258, 2022.
  16. V. Subramanian, T. Syeda-Mahmood, and M. N. Do, “Multimodal fusion using sparse CCA for breast cancer survival prediction,” IEEE International Symposium on Biomedical Imaging, pp. 1429–1432, 2021.
  17. R. Vanguri, J. Luo, A. Aukerman, J. V. Egger, C. J. Fong, N. Horvat, A. Pagano, J. d. A. B. Araújo-Filho, L. Geneslaw, H. Rizvi, R. E. Sosa, K. M. Boehm, S. Yang, F. M. Bodd, K. Ventura, T. J. Hollmann, M. S. Ginsberg, J. Gao, M. D. Hellmann, J. L. Sauter, and S. P. Shah, “Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer,” Nature Cancer, vol. 3, no. 10, pp. 1151–1164, 2022.
  18. W. Lingle, B. J. Erickson, M. L. Zuley, R. Jarosz, E. Bonaccio, J. Filippini, J. M. Net, L. Levi, E. A. Morris, G. G. Figler, P. Elnajjar, S. Kirk, Y. Lee, M. Giger, and N. Gruszauskas, “The cancer genome atlas breast invasive carcinoma collection (TCGA-BRCA),” The Cancer Imaging Archive, 2016.
  19. P. Bankhead, M. B. Loughrey, J. A. Fernández, Y. Dombrowski, D. G. McArt, P. D. Dunne, S. McQuaid, R. T. Gray, L. J. Murray, H. G. Coleman, J. A. James, M. Salto-Tellez, and P. W. Hamilton, “QuPath: Open source software for digital pathology image analysis,” Scientific Reports, vol. 7, p. 16878, 2017.
  20. M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology slides for quantitative analysis,” IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1107–1110, 2009.
  21. B. Li and C. N. Dewey, “RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome,” BMC Bioinformatics, vol. 12, p. 323, 2011.
  22. J. S. Parker, M. E. Mullins, M. C. Cheang, S. Leung, V. David, T. L. Vickery, S. R. Davies, C. Fauron, X. He, Z. Hu, J. Quackenbush, I. J. Stijleman, J. Palazzo, J. S. Marron, A. B. Nobel, E. R. Mardis, T. O. Nielsen, M. J. Ellis, C. M. Perou, and P. S. Bernard, “Supervised risk predictor of breast cancer based on intrinsic subtypes,” Journal of Clinical Oncology, vol. 27, pp. 1160–1167, 2009.
  23. Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li, “MaxViT: Multi-axis vision transformer,” European Conference on Computer Vision (ECCV), p. 459–479, 2022.
  24. A. D. Jones, J. P. Graff, M. A. Darrow, A. D. Borowsky, K. Olson, R. Gandour-Edwards, A. Mitra, D. Wei, G. Gao, B. Durbin-Johnson, and H. H. Rashidi, “Impact of pre-analytical variables on deep learning accuracy in histopathology,” Histopathology, vol. 75, pp. 39–53, 2019.
  25. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” International Conference on Learning Representations (ICLR), 2019.
  26. E. Longato, M. Vettoretti, and B. Di Camillo, “A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models,” Journal of Biomedical Informatics, vol. 108, p. 103496, 2020.
  27. K. J. Jager, P. C. van Dijk, C. Zoccali, and F. W. Dekker, “The analysis of survival data: The Kaplan–Meier method,” Kidney International, vol. 74, no. 5, pp. 560–565, 2008.
Citations (2)

Summary

We haven't generated a summary for this paper yet.