Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

In-Context Learning Demonstration Selection via Influence Analysis (2402.11750v2)

Published 19 Feb 2024 in cs.CL

Abstract: LLMs have showcased their In-Context Learning (ICL) capabilities, enabling few-shot learning without the need for gradient updates. Despite its advantages, the effectiveness of ICL heavily depends on the choice of demonstrations. Selecting the most effective demonstrations for ICL remains a significant research challenge. To tackle this issue, we propose a demonstration selection method named InfICL, which utilizes influence functions to analyze impacts of training samples. By identifying the most influential training samples as demonstrations, InfICL aims to enhance the ICL generalization performance. To keep InfICL cost-effective, we only use the LLM to generate sample input embeddings, avoiding expensive fine-tuning. Through empirical studies on various real-world datasets, we demonstrate advantages of InfICL compared to state-of-the-art baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.