Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Limits of Information Spread by Memory-less Agents (2402.11553v3)

Published 18 Feb 2024 in cs.MA and cs.DC

Abstract: We address the self-stabilizing bit-dissemination problem, designed to capture the challenges of spreading information and reaching consensus among entities with minimal cognitive and communication capacities. Specifically, a group of $n$ agents is required to adopt the correct opinion, initially held by a single informed individual, choosing from two possible opinions. In order to make decisions, agents are restricted to observing the opinions of a few randomly sampled agents, and lack the ability to communicate further and to identify the informed individual. Additionally, agents cannot retain any information from one round to the next. According to a recent publication by Becchetti et al. in SODA (2024), a logarithmic convergence time without memory is achievable in the parallel setting (where agents are updated simultaneously), as long as the number of samples is at least $\Omega(\sqrt{n \log n})$. However, determining the minimal sample size for an efficient protocol to exist remains a challenging open question. As a preliminary step towards an answer, we establish the first lower bound for this problem in the parallel setting. Specifically, we demonstrate that it is impossible for any memory-less protocol with constant sample size, to converge with high probability in less than an almost-linear number of rounds. This lower bound holds even when agents are aware of both the exact value of $n$ and their own opinion, and encompasses various simple existing dynamics designed to achieve consensus. Beyond the bit-dissemination problem, our result sheds light on the convergence time of the ``minority'' dynamics, the counterpart of the well-known majority rule, whose chaotic behavior is yet to be fully understood despite the apparent simplicity of the algorithm.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: