Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Large Language Models Can Better Understand Knowledge Graphs Than We Thought (2402.11541v4)

Published 18 Feb 2024 in cs.CL and cs.AI

Abstract: When we integrate factual knowledge from knowledge graphs (KGs) into LLMs to enhance their performance, the cost of injection through training increases with the scale of the models. Consequently, there is significant interest in developing prompt strategies that effectively incorporate KG information into LLMs. However, the community has not yet comprehensively understood how LLMs process and interpret KG information in different input formats and organizations within prompts, and researchers often rely on trial and error. To address this gap, we design extensive experiments to empirically study LLMs' comprehension of different KG prompts. At the literal level, we reveal LLMs' preferences for various input formats (from linearized triples to fluent natural language text). At the attention distribution level, we discuss the underlying mechanisms driving these preferences. We then investigate how the organization of structured knowledge impacts LLMs and evaluate LLMs' robustness in processing and utilizing KG information in practical scenarios. Our experiments show that (1) linearized triples are more effective than fluent NL text in helping LLMs understand KG information and answer fact-intensive questions; (2) Different LLMs exhibit varying preferences for different organizational formats of triples; (3) LLMs with larger scales are more susceptible to noisy, incomplete subgraphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 28 likes.

Upgrade to Pro to view all of the tweets about this paper: