Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Computational complexity of the Weisfeiler-Leman dimension (2402.11531v2)

Published 18 Feb 2024 in cs.CC and cs.DM

Abstract: The Weisfeiler-Leman dimension of a graph $G$ is the least number $k$ such that the $k$-dimensional Weisfeiler-Leman algorithm distinguishes $G$ from every other non-isomorphic graph. The dimension is a standard measure of the descriptive complexity of a graph and recently finds various applications in particular in the context of machine learning. In this paper, we study the computational complexity of computing the Weisfeiler-Leman dimension. We observe that in general the problem of deciding whether the Weisfeiler-Leman dimension of $G$ is at most $k$ is NP-hard. This is also true for the more restricted problem with graphs of color multiplicity at most 4. Therefore, we study parameterized versions of the problem. We give, for each fixed $k\geq 2$, a polynomial-time algorithm that decides whether the Weisfeiler-Leman dimension of a given graph of color multiplicity at most $5$ is at most $k$. Moreover, we show that for these color multiplicities this is optimal in the sense that this problem is P-hard under logspace-uniform $\text{AC}_0$-reductions. Furthermore, for each larger bound $c$ on the color classes and each fixed $k\geq 2$, we provide a polynomial-time decision algorithm for the abelian case, that is, for structures of which each color class has an abelian automorphism group. While the graph classes we consider may seem quite restrictive, graphs with $4$-bounded abelian colors include CFI-graphs and multipedes, which form the basis of almost all known hard instances and lower bounds related to the Weisfeiler-Leman algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.