Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Measuring Privacy Loss in Distributed Spatio-Temporal Data (2402.11526v1)

Published 18 Feb 2024 in cs.CR

Abstract: Statistics about traffic flow and people's movement gathered from multiple geographical locations in a distributed manner are the driving force powering many applications, such as traffic prediction, demand prediction, and restaurant occupancy reports. However, these statistics are often based on sensitive location data of people, and hence privacy has to be preserved while releasing them. The standard way to do this is via differential privacy, which guarantees a form of rigorous, worst-case, person-level privacy. In this work, motivated by several counter-intuitive features of differential privacy in distributed location applications, we propose an alternative privacy loss against location reconstruction attacks by an informed adversary. Our experiments on real and synthetic data demonstrate that our privacy loss better reflects our intuitions on individual privacy violation in the distributed spatio-temporal setting.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.