Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Odd Cycle Transversal on $P_5$-free Graphs in Polynomial Time (2402.11465v1)

Published 18 Feb 2024 in cs.DS

Abstract: An independent set in a graph G is a set of pairwise non-adjacent vertices. A graph $G$ is bipartite if its vertex set can be partitioned into two independent sets. In the Odd Cycle Transversal problem, the input is a graph $G$ along with a weight function $w$ associating a rational weight with each vertex, and the task is to find a smallest weight vertex subset $S$ in $G$ such that $G - S$ is bipartite; the weight of $S$, $w(S) = \sum_{v\in S} w(v)$. We show that Odd Cycle Transversal is polynomial-time solvable on graphs excluding $P_5$ (a path on five vertices) as an induced subgraph. The problem was previously known to be polynomial-time solvable on $P_4$-free graphs and NP-hard on $P_6$-free graphs [Dabrowski, Feghali, Johnson, Paesani, Paulusma and Rz\k{a}.zewski, Algorithmica 2020]. Bonamy, Dabrowski, Feghali, Johnson and Paulusma [Algorithmica 2019] posed the existence of a polynomial-time algorithm on $P_5$-free graphs as an open problem, this was later re-stated by Rz\k{a}.zewski [Dagstuhl Reports, 9(6): 2019] and by Chudnovsky, King, Pilipczuk, Rz\k{a}.zewski, and Spirkl [SIDMA 2021], who gave an algorithm with running time $n{O(\sqrt{n})}$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.