Papers
Topics
Authors
Recent
2000 character limit reached

A System-Dynamic Based Simulation and Bayesian Optimization for Inventory Management (2402.10975v1)

Published 15 Feb 2024 in math.OC and cs.CC

Abstract: Inventory management is a fundamental challenge in supply chain management. The challenge is compounded when the associated products have unpredictable demands. This study proposes an innovative optimization approach combining system-dynamic Monte-Carlo simulation and Bayesian optimization. The proposed algorithm is tested with a real-life, unpredictable demand dataset to find the optimal stock to meet the business objective. The findings show a considerable improvement in inventory policy. This information is helpful for supply chain analytics decision-making, which increases productivity and profitability. This study further adds sensitivity analysis, considering the variation in demand and expected output in profit percentage. This paper makes a substantial contribution by presenting a simple yet robust approach to addressing the fundamental difficulty of inventory management in a dynamic business environment.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.