Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Advances and Limitations in Open Source Arabic-Script OCR: A Case Study (2402.10943v1)

Published 8 Feb 2024 in cs.CL and cs.CV

Abstract: This work presents an accuracy study of the open source OCR engine, Kraken, on the leading Arabic scholarly journal, al-Abhath. In contrast with other commercially available OCR engines, Kraken is shown to be capable of producing highly accurate Arabic-script OCR. The study also assesses the relative accuracy of typeface-specific and generalized models on the al-Abhath data and provides a microanalysis of the `error instances'' and the contextual features that may have contributed to OCR misrecognition. Building on this analysis, the paper argues that Arabic-script OCR can be significantly improved through (1) a more systematic approach to training data production, and (2) the development of key technological components, especially multi-LLMs and improved line segmentation and layout analysis. Cet article pr{\'e}sente une {\'e}tude d'exactitude du moteur ROC open source, Krakan, sur la revue acad{\'e}mique arabe de premier rang, al-Abhath. Contrairement {\a} d'autres moteurs ROC disponibles sur le march{\'e}, Kraken se r{\'e}v{`e}le {^e}tre capable de produire de la ROC extr{^e}mement exacte de l'{\'e}criture arabe. L'{\'e}tude {\'e}value aussi l'exactitude relative des mod{`e}les sp{\'e}cifiquement configur{\'e}s {`a} des polices et celle des mod{`e}les g{\'e}n{\'e}ralis{\'e}s sur les donn{\'e}es d'al-Abhath et fournit une microanalyse des "occurrences d'erreurs", ainsi qu'une microanalyse des {\'e}l{\'e}ments contextuels qui pourraient avoir contribu{\'e} {`a} la m{\'e}reconnaissance ROC. S'appuyant sur cette analyse, cet article fait valoir que la ROC de l'{\'e}criture arabe peut {^e}tre consid{\'e}rablement am{\'e}lior{\'e}e gr{^a}ce {`a} (1) une approche plus syst{\'e}matique d'entra{^i}nement de la production de donn{\'e}es et (2) gr{^a}ce au d{\'e}veloppement de composants technologiques fondamentaux, notammentl'am{\'e}lioration des mod{`e}les multilingues, de la segmentation de ligne et de l'analyse de la mise en page.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: