Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Accelerating Sparse DNNs Based on Tiled GEMM (2402.10876v1)

Published 16 Feb 2024 in cs.DC

Abstract: Network pruning can reduce the computation cost of deep neural network (DNN) models. However, sparse models often produce randomly-distributed weights to maintain accuracy, leading to irregular computations. Consequently, unstructured sparse models cannot achieve meaningful speedup on commodity hardware built for dense matrix computations. Accelerators are usually modified or designed with structured sparsity-optimized architectures for exploiting sparsity. For example, the Ampere architecture introduces a sparse tensor core, which adopts the 2:4 sparsity pattern. We propose a pruning method that builds upon the insight that matrix multiplication generally breaks the large matrix into multiple smaller tiles for parallel execution. We present the tile-wise sparsity pattern, which maintains a structured sparsity pattern at the tile level for efficient execution but allows for irregular pruning at the global scale to maintain high accuracy. In addition, the tile-wise sparsity is implemented at the global memory level, and the 2:4 sparsity executes at the register level inside the sparse tensor core. We can combine these two patterns into a tile-vector-wise (TVW) sparsity pattern to explore more fine-grained sparsity and further accelerate the sparse DNN models. We evaluate the TVW on the GPU, achieving averages of $1.85\times$, $2.75\times$, and $22.18\times$ speedups over the dense model, block sparsity, and unstructured sparsity.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: