Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Training Class-Imbalanced Diffusion Model Via Overlap Optimization (2402.10821v1)

Published 16 Feb 2024 in cs.CV

Abstract: Diffusion models have made significant advances recently in high-quality image synthesis and related tasks. However, diffusion models trained on real-world datasets, which often follow long-tailed distributions, yield inferior fidelity for tail classes. Deep generative models, including diffusion models, are biased towards classes with abundant training images. To address the observed appearance overlap between synthesized images of rare classes and tail classes, we propose a method based on contrastive learning to minimize the overlap between distributions of synthetic images for different classes. We show variants of our probabilistic contrastive learning method can be applied to any class conditional diffusion model. We show significant improvement in image synthesis using our loss for multiple datasets with long-tailed distribution. Extensive experimental results demonstrate that the proposed method can effectively handle imbalanced data for diffusion-based generation and classification models. Our code and datasets will be publicly available at https://github.com/yanliang3612/DiffROP.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.