Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval Construction (2402.10760v1)

Published 16 Feb 2024 in q-fin.ST and cs.LG

Abstract: Efforts to predict stock market outcomes have yielded limited success due to the inherently stochastic nature of the market, influenced by numerous unpredictable factors. Many existing prediction approaches focus on single-point predictions, lacking the depth needed for effective decision-making and often overlooking market risk. To bridge this gap, we propose a novel model, RAGIC, which introduces sequence generation for stock interval prediction to quantify uncertainty more effectively. Our approach leverages a Generative Adversarial Network (GAN) to produce future price sequences infused with randomness inherent in financial markets. RAGIC's generator includes a risk module, capturing the risk perception of informed investors, and a temporal module, accounting for historical price trends and seasonality. This multi-faceted generator informs the creation of risk-sensitive intervals through statistical inference, incorporating horizon-wise insights. The interval's width is carefully adjusted to reflect market volatility. Importantly, our approach relies solely on publicly available data and incurs only low computational overhead. RAGIC's evaluation across globally recognized broad-based indices demonstrates its balanced performance, offering both accuracy and informativeness. Achieving a consistent 95% coverage, RAGIC maintains a narrow interval width. This promising outcome suggests that our approach effectively addresses the challenges of stock market prediction while incorporating vital risk considerations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.