Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Fitness-based Linkage Learning and Maximum-Clique Conditional Linkage Modelling for Gray-box Optimization with RV-GOMEA (2402.10757v1)

Published 16 Feb 2024 in cs.NE

Abstract: For many real-world optimization problems it is possible to perform partial evaluations, meaning that the impact of changing a few variables on a solution's fitness can be computed very efficiently. It has been shown that such partial evaluations can be excellently leveraged by the Real-Valued GOMEA (RV-GOMEA) that uses a linkage model to capture dependencies between problem variables. Recently, conditional linkage models were introduced for RV-GOMEA, expanding its state-of-the-art performance even to problems with overlapping dependencies. However, that work assumed that the dependency structure is known a priori. Fitness-based linkage learning techniques have previously been used to detect dependencies during optimization, but only for non-conditional linkage models. In this work, we combine fitness-based linkage learning and conditional linkage modelling in RV-GOMEA. In addition, we propose a new way to model overlapping dependencies in conditional linkage models to maximize the joint sampling of fully interdependent groups of variables. We compare the resulting novel variant of RV-GOMEA to other variants of RV-GOMEA and VkD-CMA on 12 problems with varying degree of overlapping dependencies. We find that the new RV-GOMEA not only performs best on most problems, also the overhead of learning the conditional linkage models during optimization is often negligible.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: