Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust Beamforming for RIS-aided Communications: Gradient-based Manifold Meta Learning (2402.10626v3)

Published 16 Feb 2024 in cs.IT, eess.SP, and math.IT

Abstract: Reconfigurable intelligent surface (RIS) has become a promising technology to realize the programmable wireless environment via steering the incident signal in fully customizable ways. However, a major challenge in RIS-aided communication systems is the simultaneous design of the precoding matrix at the base station (BS) and the phase shifting matrix of the RIS elements. This is mainly attributed to the highly non-convex optimization space of variables at both the BS and the RIS, and the diversity of communication environments. Generally, traditional optimization methods for this problem suffer from the high complexity, while existing deep learning based methods are lack of robustness in various scenarios. To address these issues, we introduce a gradient-based manifold meta learning method (GMML), which works without pre-training and has strong robustness for RIS-aided communications. Specifically, the proposed method fuses meta learning and manifold learning to improve the overall spectral efficiency, and reduce the overhead of the high-dimensional signal process. Unlike traditional deep learning based methods which directly take channel state information as input, GMML feeds the gradients of the precoding matrix and phase shifting matrix into neural networks. Coherently, we design a differential regulator to constrain the phase shifting matrix of the RIS. Numerical results show that the proposed GMML can improve the spectral efficiency by up to 7.31\%, and speed up the convergence by 23 times faster compared to traditional approaches. Moreover, they also demonstrate remarkable robustness and adaptability in dynamic settings.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: