Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Are ID Embeddings Necessary? Whitening Pre-trained Text Embeddings for Effective Sequential Recommendation (2402.10602v1)

Published 16 Feb 2024 in cs.IR

Abstract: Recent sequential recommendation models have combined pre-trained text embeddings of items with item ID embeddings to achieve superior recommendation performance. Despite their effectiveness, the expressive power of text features in these models remains largely unexplored. While most existing models emphasize the importance of ID embeddings in recommendations, our study takes a step further by studying sequential recommendation models that only rely on text features and do not necessitate ID embeddings. Upon examining pretrained text embeddings experimentally, we discover that they reside in an anisotropic semantic space, with an average cosine similarity of over 0.8 between items. We also demonstrate that this anisotropic nature hinders recommendation models from effectively differentiating between item representations and leads to degenerated performance. To address this issue, we propose to employ a pre-processing step known as whitening transformation, which transforms the anisotropic text feature distribution into an isotropic Gaussian distribution. Our experiments show that whitening pre-trained text embeddings in the sequential model can significantly improve recommendation performance. However, the full whitening operation might break the potential manifold of items with similar text semantics. To preserve the original semantics while benefiting from the isotropy of the whitened text features, we introduce WhitenRec+, an ensemble approach that leverages both fully whitened and relaxed whitened item representations for effective recommendations. We further discuss and analyze the benefits of our design through experiments and proofs. Experimental results on three public benchmark datasets demonstrate that WhitenRec+ outperforms state-of-the-art methods for sequential recommendation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.