Subfield codes of $C_D$-codes over $\mathbb{F}_2[x]/\langle x^3-x \rangle$ are really nice! (2402.10465v1)
Abstract: A non-zero $\mathbb{F}$-linear map from a finite-dimensional commutative $\mathbb{F}$-algebra to $\mathbb{F}$ is called an $\mathbb{F}$-valued trace if its kernel does not contain any non-zero ideals. In this article, we utilize an $\mathbb{F}2$-valued trace of the $\mathbb{F}_2$-algebra $\mathcal{R}_2:=\mathbb{F}_2[x]/\langle x3-x\rangle$ to study binary subfield code $\mathcal{C}_D{(2)}$ of $\mathcal{C}_D:={\left(x\cdot d\right){d\in D}: x\in \mathcal{R}_2m}$ for each defining set $D$ derived from a certain simplicial complex. For $m\in \mathbb{N}$ and $X\subseteq {1, 2, \dots, m}$, define $\Delta_X:={v\in \mathbb{F}_2m: \Supp(v)\subseteq X}$ and $D:=(1+u2)D_1+u2D_2+(u+u2)D_3,$ a subset of $\mathcal{R}_2m,$ where $u=x+\langle x3-x\rangle, D_1\in {\Delta_L, \Delta_Lc},\, D_2\in {\Delta_M, \Delta_Mc}$ and $ D_3\in {\Delta_N, \Delta_Nc}$, for $L, M, N\subseteq {1, 2, \dots, m}.$ The parameters and the Hamming weight distribution of the binary subfield code $\mathcal{C}_D{(2)}$ of $\mathcal{C}_D$ are determined for each $D.$ These binary subfield codes are minimal under certain mild conditions on the cardinalities of $L, M$ and $N$. Moreover, most of these codes are distance-optimal. Consequently, we obtain a few infinite families of minimal, self-orthogonal and distance-optimal binary linear codes that are either $2$-weight or $4$-weight. It is worth mentioning that we have obtained several new distance-optimal binary linear codes.
- A. Ashikhmin and A. Barg. Minimal vectors in linear codes. IEEE Transactions on Information Theory, 44(5):2010–2017, 1998.
- A. Bhagat and R. Sarma. F-valued trace of a finite-dimensional commutative f-algebra. Finite Fields and Their Applications, 94:102360, 2024.
- The magma algebra system i: The user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.
- Towards secure two-party computation from the wire-tap channel. In International Conference on Information Security and Cryptology, pages 34–46. Springer, 2013.
- S. Chang and J. Y. Hyun. Linear codes from simplicial complexes. Designs, Codes and Cryptography, 86:2167–2181, 2018.
- C. Ding and Z. Heng. The subfield codes of ovoid codes. IEEE Transactions on Information Theory, 65(8):4715–4729, 2019.
- C. Ding and J. Yuan. Covering and secret sharing with linear codes. In International Conference on Discrete Mathematics and Theoretical Computer Science, pages 11–25. Springer, 2003.
- K. Ding and C. Ding. A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Transactions on Information Theory, 61(11):5835–5842, 2015.
- Recent progress on weight distributions of cyclic codes over finite fields. Journal of Algebra Combinatorics Discrete Structures and Applications, pages 39–63, 2015.
- M. Greferath and A. Nechaev. Generalized frobenius extensions of finite rings and trace functions. In 2010 IEEE Information Theory Workshop, pages 1–5. IEEE, 2010.
- J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development, 4(5):532–542, 1960.
- Two families of optimal linear codes and their subfield codes. IEEE Transactions on Information Theory, 66(11):6872–6883, 2020.
- Concise encyclopedia of coding theory. CRC Press, 2021.
- W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge university press, 2010.
- Optimal non-projective linear codes constructed from down-sets. Discrete Applied Mathematics, 254:135–145, 2019.
- Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Transactions on Information Theory, 66(11):6762–6773, 2020.
- H. Liu and Z. Yu. Linear codes from simplicial complexes over 𝔽2nsubscript𝔽superscript2𝑛\mathbb{F}_{2^{n}}blackboard_F start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT. arXiv e-prints, pages arXiv–2303, 2023.
- G. Markus. Bounds on the minimum distance of linear codes. http://www. codetables. de, 2008.
- Cyclic codes for error detection. Proceedings of the IRE, 49(1):228–235, 1961.
- V. Sagar and R. Sarma. Certain binary minimal codes constructed using simplicial complexes. arXiv preprint arXiv:2211.15747, 2023.
- V. Sagar and R. Sarma. Codes over the non-unital non-commutative ring E using simplicial complexes. arXiv preprint arXiv:2304.06758, 2023.
- V. Sagar and R. Sarma. Minimal and optimal binary codes obtained using CDsubscript𝐶𝐷C_{D}italic_C start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT-construction over the non-unital ring I. arXiv preprint arXiv:2305.08781, 2023.
- V. Sagar and R. Sarma. Octanary linear codes using simplicial complexes. Cryptography and Communications, 15(3):599–616, 2023.
- A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
- M. Shi and X. Li. Few-weight codes over a non-chain ring associated with simplicial complexes and their distance optimal gray image. Finite Fields and Their Applications, 80:101994, 2022.
- Y. Wu and Y. Lee. Binary lcd codes and self-orthogonal codes via simplicial complexes. IEEE Communications Letters, 24(6):1159–1162, 2020.
- Quaternary linear codes and related binary subfield codes. IEEE Transactions on Information Theory, 68(5):3070–3080, 2022.
- Optimal few-weight codes from simplicial complexes. IEEE Transactions on Information Theory, 66(6):3657–3663, 2019.
- J. Yuan and C. Ding. Secret sharing schemes from three classes of linear codes. IEEE transactions on information theory, 52(1):206–212, 2005.