Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Subfield codes of $C_D$-codes over $\mathbb{F}_2[x]/\langle x^3-x \rangle$ are really nice! (2402.10465v1)

Published 16 Feb 2024 in cs.IT and math.IT

Abstract: A non-zero $\mathbb{F}$-linear map from a finite-dimensional commutative $\mathbb{F}$-algebra to $\mathbb{F}$ is called an $\mathbb{F}$-valued trace if its kernel does not contain any non-zero ideals. In this article, we utilize an $\mathbb{F}2$-valued trace of the $\mathbb{F}_2$-algebra $\mathcal{R}_2:=\mathbb{F}_2[x]/\langle x3-x\rangle$ to study binary subfield code $\mathcal{C}_D{(2)}$ of $\mathcal{C}_D:={\left(x\cdot d\right){d\in D}: x\in \mathcal{R}_2m}$ for each defining set $D$ derived from a certain simplicial complex. For $m\in \mathbb{N}$ and $X\subseteq {1, 2, \dots, m}$, define $\Delta_X:={v\in \mathbb{F}_2m: \Supp(v)\subseteq X}$ and $D:=(1+u2)D_1+u2D_2+(u+u2)D_3,$ a subset of $\mathcal{R}_2m,$ where $u=x+\langle x3-x\rangle, D_1\in {\Delta_L, \Delta_Lc},\, D_2\in {\Delta_M, \Delta_Mc}$ and $ D_3\in {\Delta_N, \Delta_Nc}$, for $L, M, N\subseteq {1, 2, \dots, m}.$ The parameters and the Hamming weight distribution of the binary subfield code $\mathcal{C}_D{(2)}$ of $\mathcal{C}_D$ are determined for each $D.$ These binary subfield codes are minimal under certain mild conditions on the cardinalities of $L, M$ and $N$. Moreover, most of these codes are distance-optimal. Consequently, we obtain a few infinite families of minimal, self-orthogonal and distance-optimal binary linear codes that are either $2$-weight or $4$-weight. It is worth mentioning that we have obtained several new distance-optimal binary linear codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. A. Ashikhmin and A. Barg. Minimal vectors in linear codes. IEEE Transactions on Information Theory, 44(5):2010–2017, 1998.
  2. A. Bhagat and R. Sarma. F-valued trace of a finite-dimensional commutative f-algebra. Finite Fields and Their Applications, 94:102360, 2024.
  3. The magma algebra system i: The user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.
  4. Towards secure two-party computation from the wire-tap channel. In International Conference on Information Security and Cryptology, pages 34–46. Springer, 2013.
  5. S. Chang and J. Y. Hyun. Linear codes from simplicial complexes. Designs, Codes and Cryptography, 86:2167–2181, 2018.
  6. C. Ding and Z. Heng. The subfield codes of ovoid codes. IEEE Transactions on Information Theory, 65(8):4715–4729, 2019.
  7. C. Ding and J. Yuan. Covering and secret sharing with linear codes. In International Conference on Discrete Mathematics and Theoretical Computer Science, pages 11–25. Springer, 2003.
  8. K. Ding and C. Ding. A class of two-weight and three-weight codes and their applications in secret sharing. IEEE Transactions on Information Theory, 61(11):5835–5842, 2015.
  9. Recent progress on weight distributions of cyclic codes over finite fields. Journal of Algebra Combinatorics Discrete Structures and Applications, pages 39–63, 2015.
  10. M. Greferath and A. Nechaev. Generalized frobenius extensions of finite rings and trace functions. In 2010 IEEE Information Theory Workshop, pages 1–5. IEEE, 2010.
  11. J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development, 4(5):532–542, 1960.
  12. Two families of optimal linear codes and their subfield codes. IEEE Transactions on Information Theory, 66(11):6872–6883, 2020.
  13. Concise encyclopedia of coding theory. CRC Press, 2021.
  14. W. C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge university press, 2010.
  15. Optimal non-projective linear codes constructed from down-sets. Discrete Applied Mathematics, 254:135–145, 2019.
  16. Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Transactions on Information Theory, 66(11):6762–6773, 2020.
  17. H. Liu and Z. Yu. Linear codes from simplicial complexes over 𝔽2nsubscript𝔽superscript2𝑛\mathbb{F}_{2^{n}}blackboard_F start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT. arXiv e-prints, pages arXiv–2303, 2023.
  18. G. Markus. Bounds on the minimum distance of linear codes. http://www. codetables. de, 2008.
  19. Cyclic codes for error detection. Proceedings of the IRE, 49(1):228–235, 1961.
  20. V. Sagar and R. Sarma. Certain binary minimal codes constructed using simplicial complexes. arXiv preprint arXiv:2211.15747, 2023.
  21. V. Sagar and R. Sarma. Codes over the non-unital non-commutative ring E using simplicial complexes. arXiv preprint arXiv:2304.06758, 2023.
  22. V. Sagar and R. Sarma. Minimal and optimal binary codes obtained using CDsubscript𝐶𝐷C_{D}italic_C start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT-construction over the non-unital ring I. arXiv preprint arXiv:2305.08781, 2023.
  23. V. Sagar and R. Sarma. Octanary linear codes using simplicial complexes. Cryptography and Communications, 15(3):599–616, 2023.
  24. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
  25. M. Shi and X. Li. Few-weight codes over a non-chain ring associated with simplicial complexes and their distance optimal gray image. Finite Fields and Their Applications, 80:101994, 2022.
  26. Y. Wu and Y. Lee. Binary lcd codes and self-orthogonal codes via simplicial complexes. IEEE Communications Letters, 24(6):1159–1162, 2020.
  27. Quaternary linear codes and related binary subfield codes. IEEE Transactions on Information Theory, 68(5):3070–3080, 2022.
  28. Optimal few-weight codes from simplicial complexes. IEEE Transactions on Information Theory, 66(6):3657–3663, 2019.
  29. J. Yuan and C. Ding. Secret sharing schemes from three classes of linear codes. IEEE transactions on information theory, 52(1):206–212, 2005.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com