Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Clustering Inductive Biases with Unrolled Networks (2402.10213v1)

Published 30 Nov 2023 in q-bio.NC, cs.AI, and cs.LG

Abstract: The classical sparse coding (SC) model represents visual stimuli as a linear combination of a handful of learned basis functions that are Gabor-like when trained on natural image data. However, the Gabor-like filters learned by classical sparse coding far overpredict well-tuned simple cell receptive field profiles observed empirically. While neurons fire sparsely, neuronal populations are also organized in physical space by their sensitivity to certain features. In V1, this organization is a smooth progression of orientations along the cortical sheet. A number of subsequent models have either discarded the sparse dictionary learning framework entirely or whose updates have yet to take advantage of the surge in unrolled, neural dictionary learning architectures. A key missing theme of these updates is a stronger notion of \emph{structured sparsity}. We propose an autoencoder architecture (WLSC) whose latent representations are implicitly, locally organized for spectral clustering through a Laplacian quadratic form of a bipartite graph, which generates a diverse set of artificial receptive fields that match primate data in V1 as faithfully as recent contrastive frameworks like Local Low Dimensionality, or LLD \citep{lld} that discard sparse dictionary learning. By unifying sparse and smooth coding in models of the early visual cortex through our autoencoder, we also show that our regularization can be interpreted as early-stage specialization of receptive fields to certain classes of stimuli; that is, we induce a weak clustering bias for later stages of cortex where functional and spatial segregation (i.e. topography) are known to occur. The results show an imperative for \emph{spatial regularization} of both the receptive fields and firing rates to begin to describe feature disentanglement in V1 and beyond.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: