Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Enhancing Courier Scheduling in Crowdsourced Last-Mile Delivery through Dynamic Shift Extensions: A Deep Reinforcement Learning Approach (2402.09961v1)

Published 15 Feb 2024 in cs.LG

Abstract: Crowdsourced delivery platforms face complex scheduling challenges to match couriers and customer orders. We consider two types of crowdsourced couriers, namely, committed and occasional couriers, each with different compensation schemes. Crowdsourced delivery platforms usually schedule committed courier shifts based on predicted demand. Therefore, platforms may devise an offline schedule for committed couriers before the planning period. However, due to the unpredictability of demand, there are instances where it becomes necessary to make online adjustments to the offline schedule. In this study, we focus on the problem of dynamically adjusting the offline schedule through shift extensions for committed couriers. This problem is modeled as a sequential decision process. The objective is to maximize platform profit by determining the shift extensions of couriers and the assignments of requests to couriers. To solve the model, a Deep Q-Network (DQN) learning approach is developed. Comparing this model with the baseline policy where no extensions are allowed demonstrates the benefits that platforms can gain from allowing shift extensions in terms of reward, reduced lost order costs, and lost requests. Additionally, sensitivity analysis showed that the total extension compensation increases in a nonlinear manner with the arrival rate of requests, and in a linear manner with the arrival rate of occasional couriers. On the compensation sensitivity, the results showed that the normal scenario exhibited the highest average number of shift extensions and, consequently, the fewest average number of lost requests. These findings serve as evidence of the successful learning of such dynamics by the DQN algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube