Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving the efficiency of GP-GOMEA for higher-arity operators (2402.09854v1)

Published 15 Feb 2024 in cs.NE

Abstract: Deploying machine learning models into sensitive domains in our society requires these models to be explainable. Genetic Programming (GP) can offer a way to evolve inherently interpretable expressions. GP-GOMEA is a form of GP that has been found particularly effective at evolving expressions that are accurate yet of limited size and, thus, promote interpretability. Despite this strength, a limitation of GP-GOMEA is template-based. This negatively affects its scalability regarding the arity of operators that can be used, since with increasing operator arity, an increasingly large part of the template tends to go unused. In this paper, we therefore propose two enhancements to GP-GOMEA: (i) semantic subtree inheritance, which performs additional variation steps that consider the semantic context of a subtree, and (ii) greedy child selection, which explicitly considers parts of the template that in standard GP-GOMEA remain unused. We compare different versions of GP-GOMEA regarding search enhancements on a set of continuous and discontinuous regression problems, with varying tree depths and operator sets. Experimental results show that both proposed search enhancements have a generally positive impact on the performance of GP-GOMEA, especially when the set of operators to choose from is large and contains higher-arity operators.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: