Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robust SVD Made Easy: A fast and reliable algorithm for large-scale data analysis (2402.09754v1)

Published 15 Feb 2024 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: The singular value decomposition (SVD) is a crucial tool in machine learning and statistical data analysis. However, it is highly susceptible to outliers in the data matrix. Existing robust SVD algorithms often sacrifice speed for robustness or fail in the presence of only a few outliers. This study introduces an efficient algorithm, called Spherically Normalized SVD, for robust SVD approximation that is highly insensitive to outliers, computationally scalable, and provides accurate approximations of singular vectors. The proposed algorithm achieves remarkable speed by utilizing only two applications of a standard reduced-rank SVD algorithm to appropriately scaled data, significantly outperforming competing algorithms in computation times. To assess the robustness of the approximated singular vectors and their subspaces against data contamination, we introduce new notions of breakdown points for matrix-valued input, including row-wise, column-wise, and block-wise breakdown points. Theoretical and empirical analyses demonstrate that our algorithm exhibits higher breakdown points compared to standard SVD and its modifications. We empirically validate the effectiveness of our approach in applications such as robust low-rank approximation and robust principal component analysis of high-dimensional microarray datasets. Overall, our study presents a highly efficient and robust solution for SVD approximation that overcomes the limitations of existing algorithms in the presence of outliers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com