Mixture to Mixture: Leveraging Close-talk Mixtures as Weak-supervision for Speech Separation (2402.09313v2)
Abstract: We propose mixture to mixture (M2M) training, a weakly-supervised neural speech separation algorithm that leverages close-talk mixtures as a weak supervision for training discriminative models to separate far-field mixtures. Our idea is that, for a target speaker, its close-talk mixture has a much higher signal-to-noise ratio (SNR) of the target speaker than any far-field mixtures, and hence could be utilized to design a weak supervision for separation. To realize this, at each training step we feed a far-field mixture to a deep neural network (DNN) to produce an intermediate estimate for each speaker, and, for each of considered close-talk and far-field microphones, we linearly filter the DNN estimates and optimize a loss so that the filtered estimates of all the speakers can sum up to the mixture captured by each of the considered microphones. Evaluation results on a 2-speaker separation task in simulated reverberant conditions show that M2M can effectively leverage close-talk mixtures as a weak supervision for separating far-field mixtures.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.