Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameterized dynamic data structure for Split Completion (2402.08816v1)

Published 13 Feb 2024 in cs.DS

Abstract: We design a randomized data structure that, for a fully dynamic graph $G$ updated by edge insertions and deletions and integers $k, d$ fixed upon initialization, maintains the answer to the Split Completion problem: whether one can add $k$ edges to $G$ to obtain a split graph. The data structure can be initialized on an edgeless $n$-vertex graph in time $n \cdot (k d \cdot \log n){\mathcal{O}(1)}$, and the amortized time complexity of an update is $5k \cdot (k d \cdot \log n){\mathcal{O}(1)}$. The answer provided by the data structure is correct with probability $1-\mathcal{O}(n{-d})$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Dynamic parameterized problems and algorithms. ACM Trans. Algorithms, 16(4):45:1–45:46, 2020.
  2. Color-coding. J. ACM, 42(4):844–856, 1995.
  3. A subexponential parameterized algorithm for Proper Interval Completion. SIAM J. Discret. Math., 29(4):1961–1987, 2015.
  4. Subexponential parameterized algorithm for Interval Completion. ACM Trans. Algorithms, 14(3):35:1–35:62, 2018.
  5. Yixin Cao. Linear recognition of almost interval graphs. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, pages 1096–1115. SIAM, 2016.
  6. Yixin Cao. Unit interval editing is fixed-parameter tractable. Inf. Comput., 253:109–126, 2017.
  7. Chordal editing is fixed-parameter tractable. Algorithmica, 75(1):118–137, 2016.
  8. Efficient fully dynamic elimination forests with applications to detecting long paths and cycles. In 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 796–809. SIAM, 2021.
  9. Parameterized Algorithms. Springer, 2015.
  10. Split Vertex Deletion meets Vertex Cover: New fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett., 113(5-6):179–182, 2013.
  11. Exploring the subexponential complexity of completion problems. ACM Trans. Comput. Theory, 7(4):14:1–14:38, 2015.
  12. A polynomial kernel for Trivially Perfect Editing. Algorithmica, 80(12):3481–3524, 2018.
  13. A dynamic data structure for MSO properties in graphs with bounded tree-depth. In 22th Annual European Symposium on Algorithms, ESA 2014, volume 8737 of Lecture Notes in Computer Science, pages 334–345. Springer, 2014.
  14. A dynamic data structure for counting subgraphs in sparse graphs. In 13th International Symposium on Algorithms and Data Structures, WADS 2013, volume 8037 of Lecture Notes in Computer Science, pages 304–315. Springer, 2013.
  15. A polynomial kernel for Proper Interval Vertex Deletion. SIAM J. Discret. Math., 27(4):1964–1976, 2013.
  16. Subexponential parameterized algorithm for Minimum Fill-in. SIAM J. Comput., 42(6):2197–2216, 2013.
  17. Split graphs. In Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing, volume XIX of Congressus Numerantium, pages 311–315, 1977.
  18. Faster parameterized algorithms for deletion to split graphs. Algorithmica, 71(4):989–1006, 2015.
  19. Dynamic data structures for timed automata acceptance. Algorithmica, 84(11):3223–3245, 2022.
  20. The splittance of a graph. Combinatorica, 1:275–284, 1981.
  21. Dynamically maintaining split graphs. Discret. Appl. Math., 157(9):2057–2069, 2009.
  22. Louis Ibarra. Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms, 4(4):40:1–40:20, 2008.
  23. Fast dynamic graph algorithms for parameterized problems. In 14th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2014, volume 8503 of Lecture Notes in Computer Science, pages 241–252. Springer, 2014.
  24. A near-optimal planarization algorithm. In 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, pages 1802–1811. SIAM, 2014.
  25. Unit interval vertex deletion: Fewer vertices are relevant. J. Comput. Syst. Sci., 95:109–121, 2018.
  26. Dynamic treewidth. CoRR, abs/2304.01744, 2023. To appear in the proceedings of FOCS 2023.
  27. The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980.
  28. Maintaining CMSO22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT properties on dynamic structures with bounded feedback vertex number. In 40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023, volume 254 of LIPIcs, pages 46:1–46:13. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2023.
  29. Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010.
  30. Obtaining a planar graph by vertex deletion. Algorithmica, 62(3-4):807–822, 2012.
  31. Complexity classification of some edge modification problems. Discret. Appl. Math., 113(1):109–128, 2001.
  32. Dynamic data structures for parameterized string problems. In 40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023, volume 254 of LIPIcs, pages 50:1–50:22. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2023.
  33. Pim van ’t Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845–867, 2013.
  34. Interval Completion is fixed parameter tractable. SIAM J. Comput., 38(5):2007–2020, 2009.

Summary

We haven't generated a summary for this paper yet.